Polytope of Type {4,16,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,16,2}*512b
if this polytope has a name.
Group : SmallGroup(512,391419)
Rank : 4
Schlafli Type : {4,16,2}
Number of vertices, edges, etc : 8, 64, 32, 2
Order of s0s1s2s3 : 16
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,8,2}*256a
   4-fold quotients : {4,8,2}*128a, {4,8,2}*128b, {4,4,2}*128
   8-fold quotients : {4,4,2}*64, {2,8,2}*64
   16-fold quotients : {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 33)(  2, 34)(  3, 35)(  4, 36)(  5, 37)(  6, 38)(  7, 39)(  8, 40)
(  9, 41)( 10, 42)( 11, 43)( 12, 44)( 13, 45)( 14, 46)( 15, 47)( 16, 48)
( 17, 51)( 18, 52)( 19, 49)( 20, 50)( 21, 55)( 22, 56)( 23, 53)( 24, 54)
( 25, 59)( 26, 60)( 27, 57)( 28, 58)( 29, 63)( 30, 64)( 31, 61)( 32, 62)
( 65, 97)( 66, 98)( 67, 99)( 68,100)( 69,101)( 70,102)( 71,103)( 72,104)
( 73,105)( 74,106)( 75,107)( 76,108)( 77,109)( 78,110)( 79,111)( 80,112)
( 81,115)( 82,116)( 83,113)( 84,114)( 85,119)( 86,120)( 87,117)( 88,118)
( 89,123)( 90,124)( 91,121)( 92,122)( 93,127)( 94,128)( 95,125)( 96,126);;
s1 := (  3,  4)(  5,  6)( 11, 12)( 13, 14)( 17, 21)( 18, 22)( 19, 24)( 20, 23)
( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 37, 46)( 38, 45)( 39, 47)( 40, 48)( 49, 62)( 50, 61)( 51, 63)( 52, 64)
( 53, 58)( 54, 57)( 55, 59)( 56, 60)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 86)( 70, 85)( 71, 87)( 72, 88)( 73, 89)( 74, 90)( 75, 92)( 76, 91)
( 77, 94)( 78, 93)( 79, 95)( 80, 96)( 97,123)( 98,124)( 99,122)(100,121)
(101,128)(102,127)(103,125)(104,126)(105,115)(106,116)(107,114)(108,113)
(109,120)(110,119)(111,117)(112,118);;
s2 := (  1, 65)(  2, 66)(  3, 67)(  4, 68)(  5, 70)(  6, 69)(  7, 72)(  8, 71)
(  9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 79)( 14, 80)( 15, 77)( 16, 78)
( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 81)( 22, 82)( 23, 83)( 24, 84)
( 25, 96)( 26, 95)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 90)( 32, 89)
( 33, 97)( 34, 98)( 35, 99)( 36,100)( 37,102)( 38,101)( 39,104)( 40,103)
( 41,108)( 42,107)( 43,106)( 44,105)( 45,111)( 46,112)( 47,109)( 48,110)
( 49,117)( 50,118)( 51,119)( 52,120)( 53,113)( 54,114)( 55,115)( 56,116)
( 57,128)( 58,127)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122)( 64,121);;
s3 := (129,130);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(130)!(  1, 33)(  2, 34)(  3, 35)(  4, 36)(  5, 37)(  6, 38)(  7, 39)
(  8, 40)(  9, 41)( 10, 42)( 11, 43)( 12, 44)( 13, 45)( 14, 46)( 15, 47)
( 16, 48)( 17, 51)( 18, 52)( 19, 49)( 20, 50)( 21, 55)( 22, 56)( 23, 53)
( 24, 54)( 25, 59)( 26, 60)( 27, 57)( 28, 58)( 29, 63)( 30, 64)( 31, 61)
( 32, 62)( 65, 97)( 66, 98)( 67, 99)( 68,100)( 69,101)( 70,102)( 71,103)
( 72,104)( 73,105)( 74,106)( 75,107)( 76,108)( 77,109)( 78,110)( 79,111)
( 80,112)( 81,115)( 82,116)( 83,113)( 84,114)( 85,119)( 86,120)( 87,117)
( 88,118)( 89,123)( 90,124)( 91,121)( 92,122)( 93,127)( 94,128)( 95,125)
( 96,126);
s1 := Sym(130)!(  3,  4)(  5,  6)( 11, 12)( 13, 14)( 17, 21)( 18, 22)( 19, 24)
( 20, 23)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 37, 46)( 38, 45)( 39, 47)( 40, 48)( 49, 62)( 50, 61)( 51, 63)
( 52, 64)( 53, 58)( 54, 57)( 55, 59)( 56, 60)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 86)( 70, 85)( 71, 87)( 72, 88)( 73, 89)( 74, 90)( 75, 92)
( 76, 91)( 77, 94)( 78, 93)( 79, 95)( 80, 96)( 97,123)( 98,124)( 99,122)
(100,121)(101,128)(102,127)(103,125)(104,126)(105,115)(106,116)(107,114)
(108,113)(109,120)(110,119)(111,117)(112,118);
s2 := Sym(130)!(  1, 65)(  2, 66)(  3, 67)(  4, 68)(  5, 70)(  6, 69)(  7, 72)
(  8, 71)(  9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 79)( 14, 80)( 15, 77)
( 16, 78)( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 81)( 22, 82)( 23, 83)
( 24, 84)( 25, 96)( 26, 95)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 90)
( 32, 89)( 33, 97)( 34, 98)( 35, 99)( 36,100)( 37,102)( 38,101)( 39,104)
( 40,103)( 41,108)( 42,107)( 43,106)( 44,105)( 45,111)( 46,112)( 47,109)
( 48,110)( 49,117)( 50,118)( 51,119)( 52,120)( 53,113)( 54,114)( 55,115)
( 56,116)( 57,128)( 58,127)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122)
( 64,121);
s3 := Sym(130)!(129,130);
poly := sub<Sym(130)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0 >; 
 

to this polytope