include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,16,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,16,2}*512b
if this polytope has a name.
Group : SmallGroup(512,396070)
Rank : 4
Schlafli Type : {8,16,2}
Number of vertices, edges, etc : 8, 64, 16, 2
Order of s0s1s2s3 : 16
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,8,2}*256c
4-fold quotients : {8,4,2}*128a, {4,8,2}*128b
8-fold quotients : {4,4,2}*64, {8,2,2}*64
16-fold quotients : {2,4,2}*32, {4,2,2}*32
32-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,41)(10,42)
(11,44)(12,43)(13,47)(14,48)(15,45)(16,46)(17,49)(18,50)(19,52)(20,51)(21,55)
(22,56)(23,53)(24,54)(25,58)(26,57)(27,59)(28,60)(29,64)(30,63)(31,62)
(32,61);;
s1 := ( 3, 4)( 5, 8)( 6, 7)(11,12)(13,16)(14,15)(17,21)(18,22)(19,24)(20,23)
(25,30)(26,29)(27,31)(28,32)(33,41)(34,42)(35,44)(36,43)(37,48)(38,47)(39,46)
(40,45)(49,63)(50,64)(51,61)(52,62)(53,59)(54,60)(55,57)(56,58);;
s2 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,27)(10,28)
(11,25)(12,26)(13,29)(14,30)(15,32)(16,31)(33,49)(34,50)(35,52)(36,51)(37,56)
(38,55)(39,54)(40,53)(41,59)(42,60)(43,57)(44,58)(45,61)(46,62)(47,64)
(48,63);;
s3 := (65,66);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(66)!( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,41)
(10,42)(11,44)(12,43)(13,47)(14,48)(15,45)(16,46)(17,49)(18,50)(19,52)(20,51)
(21,55)(22,56)(23,53)(24,54)(25,58)(26,57)(27,59)(28,60)(29,64)(30,63)(31,62)
(32,61);
s1 := Sym(66)!( 3, 4)( 5, 8)( 6, 7)(11,12)(13,16)(14,15)(17,21)(18,22)(19,24)
(20,23)(25,30)(26,29)(27,31)(28,32)(33,41)(34,42)(35,44)(36,43)(37,48)(38,47)
(39,46)(40,45)(49,63)(50,64)(51,61)(52,62)(53,59)(54,60)(55,57)(56,58);
s2 := Sym(66)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,27)
(10,28)(11,25)(12,26)(13,29)(14,30)(15,32)(16,31)(33,49)(34,50)(35,52)(36,51)
(37,56)(38,55)(39,54)(40,53)(41,59)(42,60)(43,57)(44,58)(45,61)(46,62)(47,64)
(48,63);
s3 := Sym(66)!(65,66);
poly := sub<Sym(66)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope