include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6}*576a
if this polytope has a name.
Group : SmallGroup(576,5053)
Rank : 3
Schlafli Type : {24,6}
Number of vertices, edges, etc : 48, 144, 12
Order of s0s1s2 : 3
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{24,6,2} of size 1152
Vertex Figure Of :
{2,24,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {8,6}*192a
4-fold quotients : {12,6}*144d
12-fold quotients : {4,6}*48b
24-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {24,12}*1152g, {24,12}*1152h, {24,6}*1152b
3-fold covers : {72,6}*1728a, {24,18}*1728a, {24,6}*1728a
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,41)(18,42)
(19,43)(20,44)(21,48)(22,47)(23,46)(24,45)(25,33)(26,34)(27,35)(28,36)(29,40)
(30,39)(31,38)(32,37);;
s1 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)(10,24)
(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(35,36)(37,44)(38,43)(39,41)(40,42)
(45,46);;
s2 := ( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)(20,26)
(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)(17,41)
(18,42)(19,43)(20,44)(21,48)(22,47)(23,46)(24,45)(25,33)(26,34)(27,35)(28,36)
(29,40)(30,39)(31,38)(32,37);
s1 := Sym(48)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,28)( 6,27)( 7,25)( 8,26)( 9,23)
(10,24)(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(35,36)(37,44)(38,43)(39,41)
(40,42)(45,46);
s2 := Sym(48)!( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 7)(14,16)(17,25)(18,28)(19,27)
(20,26)(21,23)(30,32)(33,41)(34,44)(35,43)(36,42)(37,39)(46,48);
poly := sub<Sym(48)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope