include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,24,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,24,2}*576
if this polytope has a name.
Group : SmallGroup(576,6554)
Rank : 5
Schlafli Type : {3,2,24,2}
Number of vertices, edges, etc : 3, 3, 24, 24, 2
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,24,2,2} of size 1152
{3,2,24,2,3} of size 1728
Vertex Figure Of :
{2,3,2,24,2} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,12,2}*288
3-fold quotients : {3,2,8,2}*192
4-fold quotients : {3,2,6,2}*144
6-fold quotients : {3,2,4,2}*96
8-fold quotients : {3,2,3,2}*72
12-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,24,4}*1152a, {3,2,48,2}*1152, {6,2,24,2}*1152
3-fold covers : {3,2,72,2}*1728, {9,2,24,2}*1728, {3,6,24,2}*1728a, {3,2,24,6}*1728a, {3,2,24,6}*1728b, {3,6,24,2}*1728b
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)( 9,12)(10,14)(11,13)(15,18)(16,20)(17,19)(22,25)(23,24)
(26,27);;
s3 := ( 4,10)( 5, 7)( 6,16)( 8,11)( 9,13)(12,22)(14,17)(15,19)(18,26)(20,23)
(21,24)(25,27);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(2,3);
s1 := Sym(29)!(1,2);
s2 := Sym(29)!( 5, 6)( 7, 8)( 9,12)(10,14)(11,13)(15,18)(16,20)(17,19)(22,25)
(23,24)(26,27);
s3 := Sym(29)!( 4,10)( 5, 7)( 6,16)( 8,11)( 9,13)(12,22)(14,17)(15,19)(18,26)
(20,23)(21,24)(25,27);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope