Polytope of Type {3,2,4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,12}*576b
if this polytope has a name.
Group : SmallGroup(576,8312)
Rank : 5
Schlafli Type : {3,2,4,12}
Number of vertices, edges, etc : 3, 3, 4, 24, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,4,12,2} of size 1152
Vertex Figure Of :
   {2,3,2,4,12} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,6}*288c
   4-fold quotients : {3,2,4,3}*144
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,4,24}*1152c, {3,2,4,24}*1152d, {3,2,4,12}*1152b, {6,2,4,12}*1152b
   3-fold covers : {9,2,4,12}*1728b, {3,2,4,36}*1728b
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4, 9)( 5,13)( 6,16)( 7,17)( 8,18)(10,24)(11,25)(12,26)(14,30)(15,31)
(19,36)(20,37)(21,35)(22,38)(23,39)(27,48)(28,46)(29,44)(32,45)(33,47)(34,43)
(40,50)(41,51)(42,49);;
s3 := ( 5, 6)( 7, 8)( 9,19)(11,15)(12,14)(13,27)(16,32)(17,35)(18,20)(21,37)
(22,23)(24,40)(25,43)(26,33)(28,31)(29,47)(30,44)(34,46)(38,49)(39,41)(42,51)
(45,48);;
s4 := ( 4,12)( 5, 8)( 6,23)( 7,11)( 9,26)(10,15)(13,18)(14,22)(16,39)(17,25)
(19,29)(20,46)(21,32)(24,31)(27,42)(28,37)(30,38)(33,51)(34,40)(35,45)(36,44)
(41,47)(43,50)(48,49);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!(2,3);
s1 := Sym(51)!(1,2);
s2 := Sym(51)!( 4, 9)( 5,13)( 6,16)( 7,17)( 8,18)(10,24)(11,25)(12,26)(14,30)
(15,31)(19,36)(20,37)(21,35)(22,38)(23,39)(27,48)(28,46)(29,44)(32,45)(33,47)
(34,43)(40,50)(41,51)(42,49);
s3 := Sym(51)!( 5, 6)( 7, 8)( 9,19)(11,15)(12,14)(13,27)(16,32)(17,35)(18,20)
(21,37)(22,23)(24,40)(25,43)(26,33)(28,31)(29,47)(30,44)(34,46)(38,49)(39,41)
(42,51)(45,48);
s4 := Sym(51)!( 4,12)( 5, 8)( 6,23)( 7,11)( 9,26)(10,15)(13,18)(14,22)(16,39)
(17,25)(19,29)(20,46)(21,32)(24,31)(27,42)(28,37)(30,38)(33,51)(34,40)(35,45)
(36,44)(41,47)(43,50)(48,49);
poly := sub<Sym(51)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope