include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,12}*576d
if this polytope has a name.
Group : SmallGroup(576,8313)
Rank : 4
Schlafli Type : {4,6,12}
Number of vertices, edges, etc : 4, 12, 36, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,6,12,2} of size 1152
Vertex Figure Of :
{2,4,6,12} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,6}*288d
3-fold quotients : {4,6,4}*192c
6-fold quotients : {4,6,2}*96c
12-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,24}*1152d, {4,12,12}*1152d, {4,12,12}*1152f, {4,6,12}*1152a
3-fold covers : {4,6,36}*1728c, {4,18,12}*1728c, {4,6,12}*1728d, {4,6,12}*1728j
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144);;
s1 := ( 2, 3)( 6, 7)( 10, 11)( 13, 25)( 14, 27)( 15, 26)( 16, 28)( 17, 29)
( 18, 31)( 19, 30)( 20, 32)( 21, 33)( 22, 35)( 23, 34)( 24, 36)( 38, 39)
( 42, 43)( 46, 47)( 49, 61)( 50, 63)( 51, 62)( 52, 64)( 53, 65)( 54, 67)
( 55, 66)( 56, 68)( 57, 69)( 58, 71)( 59, 70)( 60, 72)( 74, 75)( 78, 79)
( 82, 83)( 85, 97)( 86, 99)( 87, 98)( 88,100)( 89,101)( 90,103)( 91,102)
( 92,104)( 93,105)( 94,107)( 95,106)( 96,108)(110,111)(114,115)(118,119)
(121,133)(122,135)(123,134)(124,136)(125,137)(126,139)(127,138)(128,140)
(129,141)(130,143)(131,142)(132,144);;
s2 := ( 1, 25)( 2, 28)( 3, 27)( 4, 26)( 5, 33)( 6, 36)( 7, 35)( 8, 34)
( 9, 29)( 10, 32)( 11, 31)( 12, 30)( 14, 16)( 17, 21)( 18, 24)( 19, 23)
( 20, 22)( 37, 61)( 38, 64)( 39, 63)( 40, 62)( 41, 69)( 42, 72)( 43, 71)
( 44, 70)( 45, 65)( 46, 68)( 47, 67)( 48, 66)( 50, 52)( 53, 57)( 54, 60)
( 55, 59)( 56, 58)( 73,133)( 74,136)( 75,135)( 76,134)( 77,141)( 78,144)
( 79,143)( 80,142)( 81,137)( 82,140)( 83,139)( 84,138)( 85,121)( 86,124)
( 87,123)( 88,122)( 89,129)( 90,132)( 91,131)( 92,130)( 93,125)( 94,128)
( 95,127)( 96,126)( 97,109)( 98,112)( 99,111)(100,110)(101,117)(102,120)
(103,119)(104,118)(105,113)(106,116)(107,115)(108,114);;
s3 := ( 1, 77)( 2, 78)( 3, 79)( 4, 80)( 5, 73)( 6, 74)( 7, 75)( 8, 76)
( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 89)( 14, 90)( 15, 91)( 16, 92)
( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 93)( 22, 94)( 23, 95)( 24, 96)
( 25,101)( 26,102)( 27,103)( 28,104)( 29, 97)( 30, 98)( 31, 99)( 32,100)
( 33,105)( 34,106)( 35,107)( 36,108)( 37,113)( 38,114)( 39,115)( 40,116)
( 41,109)( 42,110)( 43,111)( 44,112)( 45,117)( 46,118)( 47,119)( 48,120)
( 49,125)( 50,126)( 51,127)( 52,128)( 53,121)( 54,122)( 55,123)( 56,124)
( 57,129)( 58,130)( 59,131)( 60,132)( 61,137)( 62,138)( 63,139)( 64,140)
( 65,133)( 66,134)( 67,135)( 68,136)( 69,141)( 70,142)( 71,143)( 72,144);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144);
s1 := Sym(144)!( 2, 3)( 6, 7)( 10, 11)( 13, 25)( 14, 27)( 15, 26)( 16, 28)
( 17, 29)( 18, 31)( 19, 30)( 20, 32)( 21, 33)( 22, 35)( 23, 34)( 24, 36)
( 38, 39)( 42, 43)( 46, 47)( 49, 61)( 50, 63)( 51, 62)( 52, 64)( 53, 65)
( 54, 67)( 55, 66)( 56, 68)( 57, 69)( 58, 71)( 59, 70)( 60, 72)( 74, 75)
( 78, 79)( 82, 83)( 85, 97)( 86, 99)( 87, 98)( 88,100)( 89,101)( 90,103)
( 91,102)( 92,104)( 93,105)( 94,107)( 95,106)( 96,108)(110,111)(114,115)
(118,119)(121,133)(122,135)(123,134)(124,136)(125,137)(126,139)(127,138)
(128,140)(129,141)(130,143)(131,142)(132,144);
s2 := Sym(144)!( 1, 25)( 2, 28)( 3, 27)( 4, 26)( 5, 33)( 6, 36)( 7, 35)
( 8, 34)( 9, 29)( 10, 32)( 11, 31)( 12, 30)( 14, 16)( 17, 21)( 18, 24)
( 19, 23)( 20, 22)( 37, 61)( 38, 64)( 39, 63)( 40, 62)( 41, 69)( 42, 72)
( 43, 71)( 44, 70)( 45, 65)( 46, 68)( 47, 67)( 48, 66)( 50, 52)( 53, 57)
( 54, 60)( 55, 59)( 56, 58)( 73,133)( 74,136)( 75,135)( 76,134)( 77,141)
( 78,144)( 79,143)( 80,142)( 81,137)( 82,140)( 83,139)( 84,138)( 85,121)
( 86,124)( 87,123)( 88,122)( 89,129)( 90,132)( 91,131)( 92,130)( 93,125)
( 94,128)( 95,127)( 96,126)( 97,109)( 98,112)( 99,111)(100,110)(101,117)
(102,120)(103,119)(104,118)(105,113)(106,116)(107,115)(108,114);
s3 := Sym(144)!( 1, 77)( 2, 78)( 3, 79)( 4, 80)( 5, 73)( 6, 74)( 7, 75)
( 8, 76)( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 89)( 14, 90)( 15, 91)
( 16, 92)( 17, 85)( 18, 86)( 19, 87)( 20, 88)( 21, 93)( 22, 94)( 23, 95)
( 24, 96)( 25,101)( 26,102)( 27,103)( 28,104)( 29, 97)( 30, 98)( 31, 99)
( 32,100)( 33,105)( 34,106)( 35,107)( 36,108)( 37,113)( 38,114)( 39,115)
( 40,116)( 41,109)( 42,110)( 43,111)( 44,112)( 45,117)( 46,118)( 47,119)
( 48,120)( 49,125)( 50,126)( 51,127)( 52,128)( 53,121)( 54,122)( 55,123)
( 56,124)( 57,129)( 58,130)( 59,131)( 60,132)( 61,137)( 62,138)( 63,139)
( 64,140)( 65,133)( 66,134)( 67,135)( 68,136)( 69,141)( 70,142)( 71,143)
( 72,144);
poly := sub<Sym(144)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope