include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,2,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,2,6}*576b
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 5
Schlafli Type : {6,4,2,6}
Number of vertices, edges, etc : 6, 12, 4, 6, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,2,6,2} of size 1152
{6,4,2,6,3} of size 1728
Vertex Figure Of :
{2,6,4,2,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,2,6}*288, {6,4,2,3}*288b
3-fold quotients : {6,4,2,2}*192b
4-fold quotients : {3,4,2,3}*144
6-fold quotients : {3,4,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,4,2,12}*1152b, {6,4,2,6}*1152
3-fold covers : {6,4,2,18}*1728b, {18,4,2,6}*1728c, {6,12,2,6}*1728d
Permutation Representation (GAP) :
s0 := (1,4)(2,6);;
s1 := (1,2)(3,4)(5,6);;
s2 := (3,5);;
s3 := ( 9,10)(11,12);;
s4 := ( 7,11)( 8, 9)(10,12);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!(1,4)(2,6);
s1 := Sym(12)!(1,2)(3,4)(5,6);
s2 := Sym(12)!(3,5);
s3 := Sym(12)!( 9,10)(11,12);
s4 := Sym(12)!( 7,11)( 8, 9)(10,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope