include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,3,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,3,4,2}*576
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 6
Schlafli Type : {2,6,3,4,2}
Number of vertices, edges, etc : 2, 6, 9, 6, 4, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,3,4,2,2} of size 1152
{2,6,3,4,2,3} of size 1728
Vertex Figure Of :
{2,2,6,3,4,2} of size 1152
{3,2,6,3,4,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,3,4,2}*192
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,3,4,2}*1152, {2,6,3,4,2}*1152, {2,6,6,4,2}*1152e, {2,6,6,4,2}*1152f
3-fold covers : {2,6,9,4,2}*1728, {2,6,3,4,2}*1728, {6,6,3,4,2}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7,11)( 8,12)( 9,13)(10,14);;
s2 := ( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);;
s3 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14);;
s4 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s5 := (15,16);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s4*s3*s2*s4*s3*s2*s4*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(16)!(1,2);
s1 := Sym(16)!( 7,11)( 8,12)( 9,13)(10,14);
s2 := Sym(16)!( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);
s3 := Sym(16)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14);
s4 := Sym(16)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s5 := Sym(16)!(15,16);
poly := sub<Sym(16)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s4*s3*s2*s4*s3*s2*s4*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
to this polytope