Polytope of Type {4,3,4,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,3,4,2,3}*576
if this polytope has a name.
Group : SmallGroup(576,8660)
Rank : 6
Schlafli Type : {4,3,4,2,3}
Number of vertices, edges, etc : 4, 6, 6, 4, 3, 3
Order of s0s1s2s3s4s5 : 3
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,3,4,2,3,2} of size 1152
Vertex Figure Of :
   {2,4,3,4,2,3} of size 1152
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,3,4,2,3}*1152a, {4,3,4,2,3}*1152b, {4,3,4,2,6}*1152, {4,6,4,2,3}*1152d, {4,6,4,2,3}*1152e, {4,6,4,2,3}*1152f, {4,6,4,2,3}*1152g
   3-fold covers : {4,3,4,2,9}*1728, {4,9,4,2,3}*1728
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 6)( 4, 5)( 7,14)( 8,15)( 9,10)(11,13)(12,16);;
s1 := ( 2, 4)( 3, 7)( 6,11)( 9,14)(10,13)(12,15);;
s2 := ( 3, 8)( 4, 5)( 6,15)( 9,16)(10,12)(11,13);;
s3 := ( 1, 8)( 2,15)( 3, 7)( 4,12)( 5,16)( 6,14)( 9,11)(10,13);;
s4 := (18,19);;
s5 := (17,18);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, 
s4*s5*s4*s5*s4*s5, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(19)!( 1, 2)( 3, 6)( 4, 5)( 7,14)( 8,15)( 9,10)(11,13)(12,16);
s1 := Sym(19)!( 2, 4)( 3, 7)( 6,11)( 9,14)(10,13)(12,15);
s2 := Sym(19)!( 3, 8)( 4, 5)( 6,15)( 9,16)(10,12)(11,13);
s3 := Sym(19)!( 1, 8)( 2,15)( 3, 7)( 4,12)( 5,16)( 6,14)( 9,11)(10,13);
s4 := Sym(19)!(18,19);
s5 := Sym(19)!(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1, s1*s3*s2*s1*s3*s2*s1*s3*s2 >; 
 

to this polytope