include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6}*600
if this polytope has a name.
Group : SmallGroup(600,154)
Rank : 4
Schlafli Type : {2,3,6}
Number of vertices, edges, etc : 2, 25, 75, 50
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,6,2} of size 1200
Vertex Figure Of :
{2,2,3,6} of size 1200
{3,2,3,6} of size 1800
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,6,6}*1200b
3-fold covers : {2,3,6}*1800
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 8,25)( 9,26)(10,27)(11,23)(12,24)(13,22)(14,18)(15,19)(16,20)(17,21);;
s2 := ( 4, 9)( 5,15)( 6,21)( 7,27)( 8,23)(11,16)(12,22)(13,18)(14,24)(20,25);;
s3 := ( 3, 4)( 5, 7)( 8,12)( 9,11)(13,15)(16,17)(19,22)(20,21)(23,26)(24,25);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!(1,2);
s1 := Sym(27)!( 8,25)( 9,26)(10,27)(11,23)(12,24)(13,22)(14,18)(15,19)(16,20)
(17,21);
s2 := Sym(27)!( 4, 9)( 5,15)( 6,21)( 7,27)( 8,23)(11,16)(12,22)(13,18)(14,24)
(20,25);
s3 := Sym(27)!( 3, 4)( 5, 7)( 8,12)( 9,11)(13,15)(16,17)(19,22)(20,21)(23,26)
(24,25);
poly := sub<Sym(27)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >;
to this polytope