Polytope of Type {6,52}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,52}*624b
if this polytope has a name.
Group : SmallGroup(624,242)
Rank : 3
Schlafli Type : {6,52}
Number of vertices, edges, etc : 6, 156, 52
Order of s0s1s2 : 39
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,52,2} of size 1248
Vertex Figure Of :
   {2,6,52} of size 1248
Quotients (Maximal Quotients in Boldface) :
   13-fold quotients : {6,4}*48b
   26-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,52}*1248
   3-fold covers : {18,52}*1872b, {6,156}*1872d
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)(38,39)
(42,43)(46,47)(50,51);;
s1 := ( 3, 4)( 5,49)( 6,50)( 7,52)( 8,51)( 9,45)(10,46)(11,48)(12,47)(13,41)
(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,33)(22,34)(23,36)(24,35)
(25,29)(26,30)(27,32)(28,31);;
s2 := ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,52)(10,51)(11,50)(12,49)(13,48)(14,47)
(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)
(26,35)(27,34)(28,33)(29,32)(30,31);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)
(38,39)(42,43)(46,47)(50,51);
s1 := Sym(52)!( 3, 4)( 5,49)( 6,50)( 7,52)( 8,51)( 9,45)(10,46)(11,48)(12,47)
(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,33)(22,34)(23,36)
(24,35)(25,29)(26,30)(27,32)(28,31);
s2 := Sym(52)!( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,52)(10,51)(11,50)(12,49)(13,48)
(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)
(25,36)(26,35)(27,34)(28,33)(29,32)(30,31);
poly := sub<Sym(52)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope