include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,39}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,39}*624
if this polytope has a name.
Group : SmallGroup(624,245)
Rank : 4
Schlafli Type : {2,4,39}
Number of vertices, edges, etc : 2, 4, 78, 39
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,39,2} of size 1248
Vertex Figure Of :
{2,2,4,39} of size 1248
{3,2,4,39} of size 1872
Quotients (Maximal Quotients in Boldface) :
13-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,39}*1248, {2,4,78}*1248b, {2,4,78}*1248c
3-fold covers : {2,4,117}*1872
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)
(45,46)(47,48)(49,50)(51,52)(53,54);;
s2 := ( 4, 5)( 7,51)( 8,53)( 9,52)(10,54)(11,47)(12,49)(13,48)(14,50)(15,43)
(16,45)(17,44)(18,46)(19,39)(20,41)(21,40)(22,42)(23,35)(24,37)(25,36)(26,38)
(27,31)(28,33)(29,32)(30,34);;
s3 := ( 3, 7)( 4, 8)( 5,10)( 6, 9)(11,51)(12,52)(13,54)(14,53)(15,47)(16,48)
(17,50)(18,49)(19,43)(20,44)(21,46)(22,45)(23,39)(24,40)(25,42)(26,41)(27,35)
(28,36)(29,38)(30,37)(33,34);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!(1,2);
s1 := Sym(54)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52)(53,54);
s2 := Sym(54)!( 4, 5)( 7,51)( 8,53)( 9,52)(10,54)(11,47)(12,49)(13,48)(14,50)
(15,43)(16,45)(17,44)(18,46)(19,39)(20,41)(21,40)(22,42)(23,35)(24,37)(25,36)
(26,38)(27,31)(28,33)(29,32)(30,34);
s3 := Sym(54)!( 3, 7)( 4, 8)( 5,10)( 6, 9)(11,51)(12,52)(13,54)(14,53)(15,47)
(16,48)(17,50)(18,49)(19,43)(20,44)(21,46)(22,45)(23,39)(24,40)(25,42)(26,41)
(27,35)(28,36)(29,38)(30,37)(33,34);
poly := sub<Sym(54)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope