Polytope of Type {20,2,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,2,8}*640
if this polytope has a name.
Group : SmallGroup(640,13418)
Rank : 4
Schlafli Type : {20,2,8}
Number of vertices, edges, etc : 20, 20, 8, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {20,2,8,2} of size 1280
Vertex Figure Of :
   {2,20,2,8} of size 1280
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,2,4}*320, {10,2,8}*320
   4-fold quotients : {5,2,8}*160, {20,2,2}*160, {10,2,4}*160
   5-fold quotients : {4,2,8}*128
   8-fold quotients : {5,2,4}*80, {10,2,2}*80
   10-fold quotients : {4,2,4}*64, {2,2,8}*64
   16-fold quotients : {5,2,2}*40
   20-fold quotients : {2,2,4}*32, {4,2,2}*32
   40-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {40,2,8}*1280, {20,4,8}*1280a, {20,2,16}*1280
   3-fold covers : {60,2,8}*1920, {20,6,8}*1920, {20,2,24}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)(18,20);;
s2 := (22,23)(24,25)(26,27);;
s3 := (21,22)(23,24)(25,26)(27,28);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(28)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);
s1 := Sym(28)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)
(18,20);
s2 := Sym(28)!(22,23)(24,25)(26,27);
s3 := Sym(28)!(21,22)(23,24)(25,26)(27,28);
poly := sub<Sym(28)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope