include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,16}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,16}*640
if this polytope has a name.
Group : SmallGroup(640,15829)
Rank : 4
Schlafli Type : {2,10,16}
Number of vertices, edges, etc : 2, 10, 80, 16
Order of s0s1s2s3 : 80
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,10,16,2} of size 1280
Vertex Figure Of :
{2,2,10,16} of size 1280
{3,2,10,16} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,8}*320
4-fold quotients : {2,10,4}*160
5-fold quotients : {2,2,16}*128
8-fold quotients : {2,10,2}*80
10-fold quotients : {2,2,8}*64
16-fold quotients : {2,5,2}*40
20-fold quotients : {2,2,4}*32
40-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,20,16}*1280a, {4,10,16}*1280, {2,10,32}*1280
3-fold covers : {2,30,16}*1920, {6,10,16}*1920, {2,10,48}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)(25,26)
(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(44,47)(45,46)(49,52)(50,51)(54,57)
(55,56)(59,62)(60,61)(64,67)(65,66)(69,72)(70,71)(74,77)(75,76)(79,82)
(80,81);;
s2 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)(23,34)
(24,33)(25,37)(26,36)(27,35)(28,39)(29,38)(30,42)(31,41)(32,40)(43,64)(44,63)
(45,67)(46,66)(47,65)(48,69)(49,68)(50,72)(51,71)(52,70)(53,79)(54,78)(55,82)
(56,81)(57,80)(58,74)(59,73)(60,77)(61,76)(62,75);;
s3 := ( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)(12,52)
(13,58)(14,59)(15,60)(16,61)(17,62)(18,53)(19,54)(20,55)(21,56)(22,57)(23,73)
(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,63)(34,64)
(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)
(25,26)(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(44,47)(45,46)(49,52)(50,51)
(54,57)(55,56)(59,62)(60,61)(64,67)(65,66)(69,72)(70,71)(74,77)(75,76)(79,82)
(80,81);
s2 := Sym(82)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)
(23,34)(24,33)(25,37)(26,36)(27,35)(28,39)(29,38)(30,42)(31,41)(32,40)(43,64)
(44,63)(45,67)(46,66)(47,65)(48,69)(49,68)(50,72)(51,71)(52,70)(53,79)(54,78)
(55,82)(56,81)(57,80)(58,74)(59,73)(60,77)(61,76)(62,75);
s3 := Sym(82)!( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)
(12,52)(13,58)(14,59)(15,60)(16,61)(17,62)(18,53)(19,54)(20,55)(21,56)(22,57)
(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,63)
(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope