Polytope of Type {4,5,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,5,2,2}*640
if this polytope has a name.
Group : SmallGroup(640,21537)
Rank : 5
Schlafli Type : {4,5,2,2}
Number of vertices, edges, etc : 16, 40, 20, 2, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,5,2,2,2} of size 1280
   {4,5,2,2,3} of size 1920
Vertex Figure Of :
   {2,4,5,2,2} of size 1280
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,5,2,4}*1280, {8,5,2,2}*1280a, {8,5,2,2}*1280b, {4,5,2,2}*1280, {4,10,2,2}*1280a, {4,10,2,2}*1280b
   3-fold covers : {4,5,2,6}*1920, {4,15,2,2}*1920
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s1 := ( 2, 9)( 3,12)( 5,15)( 6, 7)( 8,14)(13,16);;
s2 := ( 3, 4)( 5, 6)( 9,16)(10,15)(11,13)(12,14);;
s3 := (17,18);;
s4 := (19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s1 := Sym(20)!( 2, 9)( 3,12)( 5,15)( 6, 7)( 8,14)(13,16);
s2 := Sym(20)!( 3, 4)( 5, 6)( 9,16)(10,15)(11,13)(12,14);
s3 := Sym(20)!(17,18);
s4 := Sym(20)!(19,20);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 >; 
 

to this polytope