Polytope of Type {8,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,3}*672b
if this polytope has a name.
Group : SmallGroup(672,1254)
Rank : 3
Schlafli Type : {8,3}
Number of vertices, edges, etc : 112, 168, 42
Order of s0s1s2 : 14
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {8,3,2} of size 1344
Vertex Figure Of :
   {2,8,3} of size 1344
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,3}*336b
Covers (Minimal Covers in Boldface) :
   2-fold covers : {16,3}*1344b, {8,6}*1344i
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 6)( 4, 8)( 5, 7)( 9,10);;
s1 := (2,4)(3,5)(7,8);;
s2 := (1,2)(3,5)(6,7);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(10)!( 1, 2)( 3, 6)( 4, 8)( 5, 7)( 9,10);
s1 := Sym(10)!(2,4)(3,5)(7,8);
s2 := Sym(10)!(1,2)(3,5)(6,7);
poly := sub<Sym(10)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope