include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,42,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,42,4}*672b
if this polytope has a name.
Group : SmallGroup(672,1263)
Rank : 4
Schlafli Type : {2,42,4}
Number of vertices, edges, etc : 2, 42, 84, 4
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,42,4,2} of size 1344
Vertex Figure Of :
{2,2,42,4} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,21,4}*336
7-fold quotients : {2,6,4}*96c
14-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,84,4}*1344b, {2,84,4}*1344c, {4,42,4}*1344b, {2,42,4}*1344
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 27)( 8, 29)( 9, 28)( 10, 30)( 11, 23)( 12, 25)( 13, 24)
( 14, 26)( 15, 19)( 16, 21)( 17, 20)( 18, 22)( 31, 59)( 32, 61)( 33, 60)
( 34, 62)( 35, 83)( 36, 85)( 37, 84)( 38, 86)( 39, 79)( 40, 81)( 41, 80)
( 42, 82)( 43, 75)( 44, 77)( 45, 76)( 46, 78)( 47, 71)( 48, 73)( 49, 72)
( 50, 74)( 51, 67)( 52, 69)( 53, 68)( 54, 70)( 55, 63)( 56, 65)( 57, 64)
( 58, 66)( 88, 89)( 91,111)( 92,113)( 93,112)( 94,114)( 95,107)( 96,109)
( 97,108)( 98,110)( 99,103)(100,105)(101,104)(102,106)(115,143)(116,145)
(117,144)(118,146)(119,167)(120,169)(121,168)(122,170)(123,163)(124,165)
(125,164)(126,166)(127,159)(128,161)(129,160)(130,162)(131,155)(132,157)
(133,156)(134,158)(135,151)(136,153)(137,152)(138,154)(139,147)(140,149)
(141,148)(142,150);;
s2 := ( 3,119)( 4,120)( 5,122)( 6,121)( 7,115)( 8,116)( 9,118)( 10,117)
( 11,139)( 12,140)( 13,142)( 14,141)( 15,135)( 16,136)( 17,138)( 18,137)
( 19,131)( 20,132)( 21,134)( 22,133)( 23,127)( 24,128)( 25,130)( 26,129)
( 27,123)( 28,124)( 29,126)( 30,125)( 31, 91)( 32, 92)( 33, 94)( 34, 93)
( 35, 87)( 36, 88)( 37, 90)( 38, 89)( 39,111)( 40,112)( 41,114)( 42,113)
( 43,107)( 44,108)( 45,110)( 46,109)( 47,103)( 48,104)( 49,106)( 50,105)
( 51, 99)( 52,100)( 53,102)( 54,101)( 55, 95)( 56, 96)( 57, 98)( 58, 97)
( 59,147)( 60,148)( 61,150)( 62,149)( 63,143)( 64,144)( 65,146)( 66,145)
( 67,167)( 68,168)( 69,170)( 70,169)( 71,163)( 72,164)( 73,166)( 74,165)
( 75,159)( 76,160)( 77,162)( 78,161)( 79,155)( 80,156)( 81,158)( 82,157)
( 83,151)( 84,152)( 85,154)( 86,153);;
s3 := ( 3, 6)( 4, 5)( 7, 10)( 8, 9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)
( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)
( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)
( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)
( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)( 80, 81)
( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)( 96, 97)
( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)(112,113)
(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)(128,129)
(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)(144,145)
(147,150)(148,149)(151,154)(152,153)(155,158)(156,157)(159,162)(160,161)
(163,166)(164,165)(167,170)(168,169);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(170)!(1,2);
s1 := Sym(170)!( 4, 5)( 7, 27)( 8, 29)( 9, 28)( 10, 30)( 11, 23)( 12, 25)
( 13, 24)( 14, 26)( 15, 19)( 16, 21)( 17, 20)( 18, 22)( 31, 59)( 32, 61)
( 33, 60)( 34, 62)( 35, 83)( 36, 85)( 37, 84)( 38, 86)( 39, 79)( 40, 81)
( 41, 80)( 42, 82)( 43, 75)( 44, 77)( 45, 76)( 46, 78)( 47, 71)( 48, 73)
( 49, 72)( 50, 74)( 51, 67)( 52, 69)( 53, 68)( 54, 70)( 55, 63)( 56, 65)
( 57, 64)( 58, 66)( 88, 89)( 91,111)( 92,113)( 93,112)( 94,114)( 95,107)
( 96,109)( 97,108)( 98,110)( 99,103)(100,105)(101,104)(102,106)(115,143)
(116,145)(117,144)(118,146)(119,167)(120,169)(121,168)(122,170)(123,163)
(124,165)(125,164)(126,166)(127,159)(128,161)(129,160)(130,162)(131,155)
(132,157)(133,156)(134,158)(135,151)(136,153)(137,152)(138,154)(139,147)
(140,149)(141,148)(142,150);
s2 := Sym(170)!( 3,119)( 4,120)( 5,122)( 6,121)( 7,115)( 8,116)( 9,118)
( 10,117)( 11,139)( 12,140)( 13,142)( 14,141)( 15,135)( 16,136)( 17,138)
( 18,137)( 19,131)( 20,132)( 21,134)( 22,133)( 23,127)( 24,128)( 25,130)
( 26,129)( 27,123)( 28,124)( 29,126)( 30,125)( 31, 91)( 32, 92)( 33, 94)
( 34, 93)( 35, 87)( 36, 88)( 37, 90)( 38, 89)( 39,111)( 40,112)( 41,114)
( 42,113)( 43,107)( 44,108)( 45,110)( 46,109)( 47,103)( 48,104)( 49,106)
( 50,105)( 51, 99)( 52,100)( 53,102)( 54,101)( 55, 95)( 56, 96)( 57, 98)
( 58, 97)( 59,147)( 60,148)( 61,150)( 62,149)( 63,143)( 64,144)( 65,146)
( 66,145)( 67,167)( 68,168)( 69,170)( 70,169)( 71,163)( 72,164)( 73,166)
( 74,165)( 75,159)( 76,160)( 77,162)( 78,161)( 79,155)( 80,156)( 81,158)
( 82,157)( 83,151)( 84,152)( 85,154)( 86,153);
s3 := Sym(170)!( 3, 6)( 4, 5)( 7, 10)( 8, 9)( 11, 14)( 12, 13)( 15, 18)
( 16, 17)( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)
( 32, 33)( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)
( 48, 49)( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)
( 64, 65)( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)
( 80, 81)( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)
( 96, 97)( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)
(112,113)(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)
(128,129)(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)
(144,145)(147,150)(148,149)(151,154)(152,153)(155,158)(156,157)(159,162)
(160,161)(163,166)(164,165)(167,170)(168,169);
poly := sub<Sym(170)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope