include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,14,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,14,2,2}*672
if this polytope has a name.
Group : SmallGroup(672,1271)
Rank : 5
Schlafli Type : {6,14,2,2}
Number of vertices, edges, etc : 6, 42, 14, 2, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,14,2,2,2} of size 1344
Vertex Figure Of :
{2,6,14,2,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,14,2,2}*224
6-fold quotients : {2,7,2,2}*112
7-fold quotients : {6,2,2,2}*96
14-fold quotients : {3,2,2,2}*48
21-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,14,2,2}*1344, {6,28,2,2}*1344a, {6,14,2,4}*1344, {6,14,4,2}*1344
Permutation Representation (GAP) :
s0 := ( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,57)( 9,58)(10,59)
(11,60)(12,61)(13,62)(14,63)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)
(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,78)(30,79)(31,80)(32,81)
(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77);;
s1 := ( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,43)( 9,49)(10,48)
(11,47)(12,46)(13,45)(14,44)(15,57)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)
(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,64)(30,70)(31,69)(32,68)
(33,67)(34,66)(35,65)(36,78)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79);;
s2 := ( 1,23)( 2,22)( 3,28)( 4,27)( 5,26)( 6,25)( 7,24)( 8,30)( 9,29)(10,35)
(11,34)(12,33)(13,32)(14,31)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)
(43,65)(44,64)(45,70)(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)(53,76)
(54,75)(55,74)(56,73)(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);;
s3 := (85,86);;
s4 := (87,88);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(88)!( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,57)( 9,58)
(10,59)(11,60)(12,61)(13,62)(14,63)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)
(21,56)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,78)(30,79)(31,80)
(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77);
s1 := Sym(88)!( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,43)( 9,49)
(10,48)(11,47)(12,46)(13,45)(14,44)(15,57)(16,63)(17,62)(18,61)(19,60)(20,59)
(21,58)(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,64)(30,70)(31,69)
(32,68)(33,67)(34,66)(35,65)(36,78)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79);
s2 := Sym(88)!( 1,23)( 2,22)( 3,28)( 4,27)( 5,26)( 6,25)( 7,24)( 8,30)( 9,29)
(10,35)(11,34)(12,33)(13,32)(14,31)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)
(21,38)(43,65)(44,64)(45,70)(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)
(53,76)(54,75)(55,74)(56,73)(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);
s3 := Sym(88)!(85,86);
s4 := Sym(88)!(87,88);
poly := sub<Sym(88)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope