include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,2,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,6,2}*672
if this polytope has a name.
Group : SmallGroup(672,1271)
Rank : 5
Schlafli Type : {14,2,6,2}
Number of vertices, edges, etc : 14, 14, 6, 6, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{14,2,6,2,2} of size 1344
Vertex Figure Of :
{2,14,2,6,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,6,2}*336, {14,2,3,2}*336
3-fold quotients : {14,2,2,2}*224
4-fold quotients : {7,2,3,2}*168
6-fold quotients : {7,2,2,2}*112
7-fold quotients : {2,2,6,2}*96
14-fold quotients : {2,2,3,2}*48
21-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {14,2,12,2}*1344, {28,2,6,2}*1344, {14,2,6,4}*1344a, {14,4,6,2}*1344
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (17,18)(19,20);;
s3 := (15,19)(16,17)(18,20);;
s4 := (21,22);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(22)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(22)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(22)!(17,18)(19,20);
s3 := Sym(22)!(15,19)(16,17)(18,20);
s4 := Sym(22)!(21,22);
poly := sub<Sym(22)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope