Polytope of Type {2,2,22,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,22,4}*704
if this polytope has a name.
Group : SmallGroup(704,1363)
Rank : 5
Schlafli Type : {2,2,22,4}
Number of vertices, edges, etc : 2, 2, 22, 44, 4
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,22,4,2} of size 1408
Vertex Figure Of :
   {2,2,2,22,4} of size 1408
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,22,2}*352
   4-fold quotients : {2,2,11,2}*176
   11-fold quotients : {2,2,2,4}*64
   22-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,44,4}*1408, {4,2,22,4}*1408, {2,4,22,4}*1408, {2,2,22,8}*1408
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)(21,22)
(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44);;
s3 := ( 5, 6)( 7,15)( 8,14)( 9,13)(10,12)(16,17)(18,26)(19,25)(20,24)(21,23)
(27,39)(28,38)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)
(37,40);;
s4 := ( 5,27)( 6,28)( 7,29)( 8,30)( 9,31)(10,32)(11,33)(12,34)(13,35)(14,36)
(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47)
(26,48);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!(1,2);
s1 := Sym(48)!(3,4);
s2 := Sym(48)!( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)
(21,22)(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44);
s3 := Sym(48)!( 5, 6)( 7,15)( 8,14)( 9,13)(10,12)(16,17)(18,26)(19,25)(20,24)
(21,23)(27,39)(28,38)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)
(37,40);
s4 := Sym(48)!( 5,27)( 6,28)( 7,29)( 8,30)( 9,31)(10,32)(11,33)(12,34)(13,35)
(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)
(25,47)(26,48);
poly := sub<Sym(48)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope