Polytope of Type {15,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,6,4}*720
if this polytope has a name.
Group : SmallGroup(720,687)
Rank : 4
Schlafli Type : {15,6,4}
Number of vertices, edges, etc : 15, 45, 12, 4
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {15,6,4,2} of size 1440
Vertex Figure Of :
   {2,15,6,4} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15,6,2}*360
   3-fold quotients : {15,2,4}*240
   5-fold quotients : {3,6,4}*144
   6-fold quotients : {15,2,2}*120
   9-fold quotients : {5,2,4}*80
   10-fold quotients : {3,6,2}*72
   15-fold quotients : {3,2,4}*48
   18-fold quotients : {5,2,2}*40
   30-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {15,6,8}*1440, {30,6,4}*1440c
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 16, 31)
( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 41)( 22, 45)( 23, 44)( 24, 43)
( 25, 42)( 26, 36)( 27, 40)( 28, 39)( 29, 38)( 30, 37)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 86)( 67, 90)( 68, 89)( 69, 88)( 70, 87)( 71, 81)
( 72, 85)( 73, 84)( 74, 83)( 75, 82)( 92, 95)( 93, 94)( 96,101)( 97,105)
( 98,104)( 99,103)(100,102)(106,121)(107,125)(108,124)(109,123)(110,122)
(111,131)(112,135)(113,134)(114,133)(115,132)(116,126)(117,130)(118,129)
(119,128)(120,127)(137,140)(138,139)(141,146)(142,150)(143,149)(144,148)
(145,147)(151,166)(152,170)(153,169)(154,168)(155,167)(156,176)(157,180)
(158,179)(159,178)(160,177)(161,171)(162,175)(163,174)(164,173)(165,172);;
s1 := (  1, 22)(  2, 21)(  3, 25)(  4, 24)(  5, 23)(  6, 17)(  7, 16)(  8, 20)
(  9, 19)( 10, 18)( 11, 27)( 12, 26)( 13, 30)( 14, 29)( 15, 28)( 31, 37)
( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 67)( 47, 66)
( 48, 70)( 49, 69)( 50, 68)( 51, 62)( 52, 61)( 53, 65)( 54, 64)( 55, 63)
( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)( 76, 82)( 77, 81)( 78, 85)
( 79, 84)( 80, 83)( 86, 87)( 88, 90)( 91,112)( 92,111)( 93,115)( 94,114)
( 95,113)( 96,107)( 97,106)( 98,110)( 99,109)(100,108)(101,117)(102,116)
(103,120)(104,119)(105,118)(121,127)(122,126)(123,130)(124,129)(125,128)
(131,132)(133,135)(136,157)(137,156)(138,160)(139,159)(140,158)(141,152)
(142,151)(143,155)(144,154)(145,153)(146,162)(147,161)(148,165)(149,164)
(150,163)(166,172)(167,171)(168,175)(169,174)(170,173)(176,177)(178,180);;
s2 := ( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)( 23, 38)
( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)( 61, 76)
( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,136)( 92,137)
( 93,138)( 94,139)( 95,140)( 96,141)( 97,142)( 98,143)( 99,144)(100,145)
(101,146)(102,147)(103,148)(104,149)(105,150)(106,166)(107,167)(108,168)
(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)(116,176)
(117,177)(118,178)(119,179)(120,180)(121,151)(122,152)(123,153)(124,154)
(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)
(133,163)(134,164)(135,165);;
s3 := (  1, 91)(  2, 92)(  3, 93)(  4, 94)(  5, 95)(  6, 96)(  7, 97)(  8, 98)
(  9, 99)( 10,100)( 11,101)( 12,102)( 13,103)( 14,104)( 15,105)( 16,106)
( 17,107)( 18,108)( 19,109)( 20,110)( 21,111)( 22,112)( 23,113)( 24,114)
( 25,115)( 26,116)( 27,117)( 28,118)( 29,119)( 30,120)( 31,121)( 32,122)
( 33,123)( 34,124)( 35,125)( 36,126)( 37,127)( 38,128)( 39,129)( 40,130)
( 41,131)( 42,132)( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)( 48,138)
( 49,139)( 50,140)( 51,141)( 52,142)( 53,143)( 54,144)( 55,145)( 56,146)
( 57,147)( 58,148)( 59,149)( 60,150)( 61,151)( 62,152)( 63,153)( 64,154)
( 65,155)( 66,156)( 67,157)( 68,158)( 69,159)( 70,160)( 71,161)( 72,162)
( 73,163)( 74,164)( 75,165)( 76,166)( 77,167)( 78,168)( 79,169)( 80,170)
( 81,171)( 82,172)( 83,173)( 84,174)( 85,175)( 86,176)( 87,177)( 88,178)
( 89,179)( 90,180);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(180)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 16, 31)( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 41)( 22, 45)( 23, 44)
( 24, 43)( 25, 42)( 26, 36)( 27, 40)( 28, 39)( 29, 38)( 30, 37)( 47, 50)
( 48, 49)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)
( 63, 79)( 64, 78)( 65, 77)( 66, 86)( 67, 90)( 68, 89)( 69, 88)( 70, 87)
( 71, 81)( 72, 85)( 73, 84)( 74, 83)( 75, 82)( 92, 95)( 93, 94)( 96,101)
( 97,105)( 98,104)( 99,103)(100,102)(106,121)(107,125)(108,124)(109,123)
(110,122)(111,131)(112,135)(113,134)(114,133)(115,132)(116,126)(117,130)
(118,129)(119,128)(120,127)(137,140)(138,139)(141,146)(142,150)(143,149)
(144,148)(145,147)(151,166)(152,170)(153,169)(154,168)(155,167)(156,176)
(157,180)(158,179)(159,178)(160,177)(161,171)(162,175)(163,174)(164,173)
(165,172);
s1 := Sym(180)!(  1, 22)(  2, 21)(  3, 25)(  4, 24)(  5, 23)(  6, 17)(  7, 16)
(  8, 20)(  9, 19)( 10, 18)( 11, 27)( 12, 26)( 13, 30)( 14, 29)( 15, 28)
( 31, 37)( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 67)
( 47, 66)( 48, 70)( 49, 69)( 50, 68)( 51, 62)( 52, 61)( 53, 65)( 54, 64)
( 55, 63)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)( 76, 82)( 77, 81)
( 78, 85)( 79, 84)( 80, 83)( 86, 87)( 88, 90)( 91,112)( 92,111)( 93,115)
( 94,114)( 95,113)( 96,107)( 97,106)( 98,110)( 99,109)(100,108)(101,117)
(102,116)(103,120)(104,119)(105,118)(121,127)(122,126)(123,130)(124,129)
(125,128)(131,132)(133,135)(136,157)(137,156)(138,160)(139,159)(140,158)
(141,152)(142,151)(143,155)(144,154)(145,153)(146,162)(147,161)(148,165)
(149,164)(150,163)(166,172)(167,171)(168,175)(169,174)(170,173)(176,177)
(178,180);
s2 := Sym(180)!( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)
( 23, 38)( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)
( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,136)
( 92,137)( 93,138)( 94,139)( 95,140)( 96,141)( 97,142)( 98,143)( 99,144)
(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,166)(107,167)
(108,168)(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)
(116,176)(117,177)(118,178)(119,179)(120,180)(121,151)(122,152)(123,153)
(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)
(132,162)(133,163)(134,164)(135,165);
s3 := Sym(180)!(  1, 91)(  2, 92)(  3, 93)(  4, 94)(  5, 95)(  6, 96)(  7, 97)
(  8, 98)(  9, 99)( 10,100)( 11,101)( 12,102)( 13,103)( 14,104)( 15,105)
( 16,106)( 17,107)( 18,108)( 19,109)( 20,110)( 21,111)( 22,112)( 23,113)
( 24,114)( 25,115)( 26,116)( 27,117)( 28,118)( 29,119)( 30,120)( 31,121)
( 32,122)( 33,123)( 34,124)( 35,125)( 36,126)( 37,127)( 38,128)( 39,129)
( 40,130)( 41,131)( 42,132)( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)
( 48,138)( 49,139)( 50,140)( 51,141)( 52,142)( 53,143)( 54,144)( 55,145)
( 56,146)( 57,147)( 58,148)( 59,149)( 60,150)( 61,151)( 62,152)( 63,153)
( 64,154)( 65,155)( 66,156)( 67,157)( 68,158)( 69,159)( 70,160)( 71,161)
( 72,162)( 73,163)( 74,164)( 75,165)( 76,166)( 77,167)( 78,168)( 79,169)
( 80,170)( 81,171)( 82,172)( 83,173)( 84,174)( 85,175)( 86,176)( 87,177)
( 88,178)( 89,179)( 90,180);
poly := sub<Sym(180)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope