include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,20,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,20,2}*720
if this polytope has a name.
Group : SmallGroup(720,810)
Rank : 4
Schlafli Type : {6,20,2}
Number of vertices, edges, etc : 9, 90, 30, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,20,2,2} of size 1440
Vertex Figure Of :
{2,6,20,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {6,4,2}*144
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,20,4}*1440, {6,20,2}*1440
Permutation Representation (GAP) :
s0 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)
(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);;
s1 := ( 1, 6)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)(16,21)(17,25)(18,24)
(19,23)(20,22)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)
(43,44);;
s2 := ( 1, 2)( 3, 5)( 6,17)( 7,16)( 8,20)( 9,19)(10,18)(11,32)(12,31)(13,35)
(14,34)(15,33)(21,22)(23,25)(26,37)(27,36)(28,40)(29,39)(30,38)(41,42)
(43,45);;
s3 := (46,47);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)
(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);
s1 := Sym(47)!( 1, 6)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)(16,21)(17,25)
(18,24)(19,23)(20,22)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)
(43,44);
s2 := Sym(47)!( 1, 2)( 3, 5)( 6,17)( 7,16)( 8,20)( 9,19)(10,18)(11,32)(12,31)
(13,35)(14,34)(15,33)(21,22)(23,25)(26,37)(27,36)(28,40)(29,39)(30,38)(41,42)
(43,45);
s3 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope