Polytope of Type {10,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6,6}*720b
if this polytope has a name.
Group : SmallGroup(720,813)
Rank : 4
Schlafli Type : {10,6,6}
Number of vertices, edges, etc : 10, 30, 18, 6
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,6,6,2} of size 1440
Vertex Figure Of :
   {2,10,6,6} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,6,3}*360
   3-fold quotients : {10,2,6}*240
   5-fold quotients : {2,6,6}*144b
   6-fold quotients : {5,2,6}*120, {10,2,3}*120
   9-fold quotients : {10,2,2}*80
   10-fold quotients : {2,6,3}*72
   12-fold quotients : {5,2,3}*60
   15-fold quotients : {2,2,6}*48
   18-fold quotients : {5,2,2}*40
   30-fold quotients : {2,2,3}*24
   45-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,6,12}*1440b, {20,6,6}*1440c, {10,12,6}*1440c
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)
(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)
(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)
(82,85)(83,84)(87,90)(88,89);;
s1 := ( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)(21,27)
(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)(40,43)
(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58)(61,62)(63,65)(66,72)(67,71)
(68,75)(69,74)(70,73)(76,77)(78,80)(81,87)(82,86)(83,90)(84,89)(85,88);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(16,36)(17,37)(18,38)(19,39)(20,40)
(21,31)(22,32)(23,33)(24,34)(25,35)(26,41)(27,42)(28,43)(29,44)(30,45)(46,51)
(47,52)(48,53)(49,54)(50,55)(61,81)(62,82)(63,83)(64,84)(65,85)(66,76)(67,77)
(68,78)(69,79)(70,80)(71,86)(72,87)(73,88)(74,89)(75,90);;
s3 := ( 1,61)( 2,62)( 3,63)( 4,64)( 5,65)( 6,71)( 7,72)( 8,73)( 9,74)(10,75)
(11,66)(12,67)(13,68)(14,69)(15,70)(16,46)(17,47)(18,48)(19,49)(20,50)(21,56)
(22,57)(23,58)(24,59)(25,60)(26,51)(27,52)(28,53)(29,54)(30,55)(31,76)(32,77)
(33,78)(34,79)(35,80)(36,86)(37,87)(38,88)(39,89)(40,90)(41,81)(42,82)(43,83)
(44,84)(45,85);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(90)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)
(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)
(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)
(78,79)(82,85)(83,84)(87,90)(88,89);
s1 := Sym(90)!( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)
(21,27)(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)
(40,43)(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58)(61,62)(63,65)(66,72)
(67,71)(68,75)(69,74)(70,73)(76,77)(78,80)(81,87)(82,86)(83,90)(84,89)(85,88);
s2 := Sym(90)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(16,36)(17,37)(18,38)(19,39)
(20,40)(21,31)(22,32)(23,33)(24,34)(25,35)(26,41)(27,42)(28,43)(29,44)(30,45)
(46,51)(47,52)(48,53)(49,54)(50,55)(61,81)(62,82)(63,83)(64,84)(65,85)(66,76)
(67,77)(68,78)(69,79)(70,80)(71,86)(72,87)(73,88)(74,89)(75,90);
s3 := Sym(90)!( 1,61)( 2,62)( 3,63)( 4,64)( 5,65)( 6,71)( 7,72)( 8,73)( 9,74)
(10,75)(11,66)(12,67)(13,68)(14,69)(15,70)(16,46)(17,47)(18,48)(19,49)(20,50)
(21,56)(22,57)(23,58)(24,59)(25,60)(26,51)(27,52)(28,53)(29,54)(30,55)(31,76)
(32,77)(33,78)(34,79)(35,80)(36,86)(37,87)(38,88)(39,89)(40,90)(41,81)(42,82)
(43,83)(44,84)(45,85);
poly := sub<Sym(90)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope