Polytope of Type {24,4,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4,2,2}*768a
if this polytope has a name.
Group : SmallGroup(768,1035864)
Rank : 5
Schlafli Type : {24,4,2,2}
Number of vertices, edges, etc : 24, 48, 4, 2, 2
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4,2,2}*384a, {24,2,2,2}*384
   3-fold quotients : {8,4,2,2}*256a
   4-fold quotients : {12,2,2,2}*192, {6,4,2,2}*192a
   6-fold quotients : {4,4,2,2}*128, {8,2,2,2}*128
   8-fold quotients : {6,2,2,2}*96
   12-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
   16-fold quotients : {3,2,2,2}*48
   24-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(13,16)(14,18)(15,17)(19,22)(20,24)(21,23)
(25,37)(26,39)(27,38)(28,40)(29,42)(30,41)(31,43)(32,45)(33,44)(34,46)(35,48)
(36,47)(50,51)(53,54)(56,57)(59,60)(61,64)(62,66)(63,65)(67,70)(68,72)(69,71)
(73,85)(74,87)(75,86)(76,88)(77,90)(78,89)(79,91)(80,93)(81,92)(82,94)(83,96)
(84,95);;
s1 := ( 1,26)( 2,25)( 3,27)( 4,29)( 5,28)( 6,30)( 7,32)( 8,31)( 9,33)(10,35)
(11,34)(12,36)(13,41)(14,40)(15,42)(16,38)(17,37)(18,39)(19,47)(20,46)(21,48)
(22,44)(23,43)(24,45)(49,74)(50,73)(51,75)(52,77)(53,76)(54,78)(55,80)(56,79)
(57,81)(58,83)(59,82)(60,84)(61,89)(62,88)(63,90)(64,86)(65,85)(66,87)(67,95)
(68,94)(69,96)(70,92)(71,91)(72,93);;
s2 := ( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)(10,58)
(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)
(22,70)(23,71)(24,72)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,73)(32,74)
(33,75)(34,76)(35,77)(36,78)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,85)
(44,86)(45,87)(46,88)(47,89)(48,90);;
s3 := (97,98);;
s4 := ( 99,100);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(100)!( 2, 3)( 5, 6)( 8, 9)(11,12)(13,16)(14,18)(15,17)(19,22)(20,24)
(21,23)(25,37)(26,39)(27,38)(28,40)(29,42)(30,41)(31,43)(32,45)(33,44)(34,46)
(35,48)(36,47)(50,51)(53,54)(56,57)(59,60)(61,64)(62,66)(63,65)(67,70)(68,72)
(69,71)(73,85)(74,87)(75,86)(76,88)(77,90)(78,89)(79,91)(80,93)(81,92)(82,94)
(83,96)(84,95);
s1 := Sym(100)!( 1,26)( 2,25)( 3,27)( 4,29)( 5,28)( 6,30)( 7,32)( 8,31)( 9,33)
(10,35)(11,34)(12,36)(13,41)(14,40)(15,42)(16,38)(17,37)(18,39)(19,47)(20,46)
(21,48)(22,44)(23,43)(24,45)(49,74)(50,73)(51,75)(52,77)(53,76)(54,78)(55,80)
(56,79)(57,81)(58,83)(59,82)(60,84)(61,89)(62,88)(63,90)(64,86)(65,85)(66,87)
(67,95)(68,94)(69,96)(70,92)(71,91)(72,93);
s2 := Sym(100)!( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)
(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)
(21,69)(22,70)(23,71)(24,72)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,73)
(32,74)(33,75)(34,76)(35,77)(36,78)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)
(43,85)(44,86)(45,87)(46,88)(47,89)(48,90);
s3 := Sym(100)!(97,98);
s4 := Sym(100)!( 99,100);
poly := sub<Sym(100)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope