include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,4,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,4,2,2}*768
if this polytope has a name.
Group : SmallGroup(768,1076197)
Rank : 6
Schlafli Type : {6,4,4,2,2}
Number of vertices, edges, etc : 6, 12, 8, 4, 2, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,2,4,2,2}*384, {6,4,2,2,2}*384a
3-fold quotients : {2,4,4,2,2}*256
4-fold quotients : {3,2,4,2,2}*192, {6,2,2,2,2}*192
6-fold quotients : {2,2,4,2,2}*128, {2,4,2,2,2}*128
8-fold quotients : {3,2,2,2,2}*96
12-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48);;
s1 := ( 1,14)( 2,13)( 3,15)( 4,17)( 5,16)( 6,18)( 7,20)( 8,19)( 9,21)(10,23)
(11,22)(12,24)(25,38)(26,37)(27,39)(28,41)(29,40)(30,42)(31,44)(32,43)(33,45)
(34,47)(35,46)(36,48);;
s2 := (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)(31,34)
(32,35)(33,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45);;
s3 := ( 1,25)( 2,26)( 3,27)( 4,28)( 5,29)( 6,30)( 7,31)( 8,32)( 9,33)(10,34)
(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)
(22,46)(23,47)(24,48);;
s4 := (49,50);;
s5 := (51,52);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48);
s1 := Sym(52)!( 1,14)( 2,13)( 3,15)( 4,17)( 5,16)( 6,18)( 7,20)( 8,19)( 9,21)
(10,23)(11,22)(12,24)(25,38)(26,37)(27,39)(28,41)(29,40)(30,42)(31,44)(32,43)
(33,45)(34,47)(35,46)(36,48);
s2 := Sym(52)!(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)
(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45);
s3 := Sym(52)!( 1,25)( 2,26)( 3,27)( 4,28)( 5,29)( 6,30)( 7,31)( 8,32)( 9,33)
(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)
(21,45)(22,46)(23,47)(24,48);
s4 := Sym(52)!(49,50);
s5 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope