include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12}*768f
if this polytope has a name.
Group : SmallGroup(768,1086012)
Rank : 3
Schlafli Type : {8,12}
Number of vertices, edges, etc : 32, 192, 48
Order of s0s1s2 : 12
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,12}*384b, {8,6}*384c
4-fold quotients : {4,6}*192a
8-fold quotients : {4,12}*96b
16-fold quotients : {4,6}*48c
32-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 25)( 2, 26)( 3, 28)( 4, 27)( 5, 30)( 6, 29)( 7, 31)( 8, 32)
( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 22)( 14, 21)( 15, 23)( 16, 24)
( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 62)( 38, 61)( 39, 63)( 40, 64)
( 41, 49)( 42, 50)( 43, 52)( 44, 51)( 45, 54)( 46, 53)( 47, 55)( 48, 56)
( 65, 89)( 66, 90)( 67, 92)( 68, 91)( 69, 94)( 70, 93)( 71, 95)( 72, 96)
( 73, 81)( 74, 82)( 75, 84)( 76, 83)( 77, 86)( 78, 85)( 79, 87)( 80, 88)
( 97,121)( 98,122)( 99,124)(100,123)(101,126)(102,125)(103,127)(104,128)
(105,113)(106,114)(107,116)(108,115)(109,118)(110,117)(111,119)(112,120)
(129,153)(130,154)(131,156)(132,155)(133,158)(134,157)(135,159)(136,160)
(137,145)(138,146)(139,148)(140,147)(141,150)(142,149)(143,151)(144,152)
(161,185)(162,186)(163,188)(164,187)(165,190)(166,189)(167,191)(168,192)
(169,177)(170,178)(171,180)(172,179)(173,182)(174,181)(175,183)(176,184)
(193,217)(194,218)(195,220)(196,219)(197,222)(198,221)(199,223)(200,224)
(201,209)(202,210)(203,212)(204,211)(205,214)(206,213)(207,215)(208,216)
(225,249)(226,250)(227,252)(228,251)(229,254)(230,253)(231,255)(232,256)
(233,241)(234,242)(235,244)(236,243)(237,246)(238,245)(239,247)(240,248)
(257,281)(258,282)(259,284)(260,283)(261,286)(262,285)(263,287)(264,288)
(265,273)(266,274)(267,276)(268,275)(269,278)(270,277)(271,279)(272,280)
(289,313)(290,314)(291,316)(292,315)(293,318)(294,317)(295,319)(296,320)
(297,305)(298,306)(299,308)(300,307)(301,310)(302,309)(303,311)(304,312)
(321,345)(322,346)(323,348)(324,347)(325,350)(326,349)(327,351)(328,352)
(329,337)(330,338)(331,340)(332,339)(333,342)(334,341)(335,343)(336,344)
(353,377)(354,378)(355,380)(356,379)(357,382)(358,381)(359,383)(360,384)
(361,369)(362,370)(363,372)(364,371)(365,374)(366,373)(367,375)(368,376);;
s1 := ( 1,289)( 2,290)( 3,291)( 4,292)( 5,295)( 6,296)( 7,293)( 8,294)
( 9,300)( 10,299)( 11,298)( 12,297)( 13,302)( 14,301)( 15,304)( 16,303)
( 17,320)( 18,319)( 19,318)( 20,317)( 21,314)( 22,313)( 23,316)( 24,315)
( 25,310)( 26,309)( 27,312)( 28,311)( 29,308)( 30,307)( 31,306)( 32,305)
( 33,353)( 34,354)( 35,355)( 36,356)( 37,359)( 38,360)( 39,357)( 40,358)
( 41,364)( 42,363)( 43,362)( 44,361)( 45,366)( 46,365)( 47,368)( 48,367)
( 49,384)( 50,383)( 51,382)( 52,381)( 53,378)( 54,377)( 55,380)( 56,379)
( 57,374)( 58,373)( 59,376)( 60,375)( 61,372)( 62,371)( 63,370)( 64,369)
( 65,321)( 66,322)( 67,323)( 68,324)( 69,327)( 70,328)( 71,325)( 72,326)
( 73,332)( 74,331)( 75,330)( 76,329)( 77,334)( 78,333)( 79,336)( 80,335)
( 81,352)( 82,351)( 83,350)( 84,349)( 85,346)( 86,345)( 87,348)( 88,347)
( 89,342)( 90,341)( 91,344)( 92,343)( 93,340)( 94,339)( 95,338)( 96,337)
( 97,193)( 98,194)( 99,195)(100,196)(101,199)(102,200)(103,197)(104,198)
(105,204)(106,203)(107,202)(108,201)(109,206)(110,205)(111,208)(112,207)
(113,224)(114,223)(115,222)(116,221)(117,218)(118,217)(119,220)(120,219)
(121,214)(122,213)(123,216)(124,215)(125,212)(126,211)(127,210)(128,209)
(129,257)(130,258)(131,259)(132,260)(133,263)(134,264)(135,261)(136,262)
(137,268)(138,267)(139,266)(140,265)(141,270)(142,269)(143,272)(144,271)
(145,288)(146,287)(147,286)(148,285)(149,282)(150,281)(151,284)(152,283)
(153,278)(154,277)(155,280)(156,279)(157,276)(158,275)(159,274)(160,273)
(161,225)(162,226)(163,227)(164,228)(165,231)(166,232)(167,229)(168,230)
(169,236)(170,235)(171,234)(172,233)(173,238)(174,237)(175,240)(176,239)
(177,256)(178,255)(179,254)(180,253)(181,250)(182,249)(183,252)(184,251)
(185,246)(186,245)(187,248)(188,247)(189,244)(190,243)(191,242)(192,241);;
s2 := ( 1, 71)( 2, 72)( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 65)( 8, 66)
( 9, 87)( 10, 88)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 81)( 16, 82)
( 17, 79)( 18, 80)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 73)( 24, 74)
( 25, 95)( 26, 96)( 27, 91)( 28, 92)( 29, 93)( 30, 94)( 31, 89)( 32, 90)
( 33, 39)( 34, 40)( 41, 55)( 42, 56)( 43, 51)( 44, 52)( 45, 53)( 46, 54)
( 47, 49)( 48, 50)( 57, 63)( 58, 64)( 97,167)( 98,168)( 99,163)(100,164)
(101,165)(102,166)(103,161)(104,162)(105,183)(106,184)(107,179)(108,180)
(109,181)(110,182)(111,177)(112,178)(113,175)(114,176)(115,171)(116,172)
(117,173)(118,174)(119,169)(120,170)(121,191)(122,192)(123,187)(124,188)
(125,189)(126,190)(127,185)(128,186)(129,135)(130,136)(137,151)(138,152)
(139,147)(140,148)(141,149)(142,150)(143,145)(144,146)(153,159)(154,160)
(193,359)(194,360)(195,355)(196,356)(197,357)(198,358)(199,353)(200,354)
(201,375)(202,376)(203,371)(204,372)(205,373)(206,374)(207,369)(208,370)
(209,367)(210,368)(211,363)(212,364)(213,365)(214,366)(215,361)(216,362)
(217,383)(218,384)(219,379)(220,380)(221,381)(222,382)(223,377)(224,378)
(225,327)(226,328)(227,323)(228,324)(229,325)(230,326)(231,321)(232,322)
(233,343)(234,344)(235,339)(236,340)(237,341)(238,342)(239,337)(240,338)
(241,335)(242,336)(243,331)(244,332)(245,333)(246,334)(247,329)(248,330)
(249,351)(250,352)(251,347)(252,348)(253,349)(254,350)(255,345)(256,346)
(257,295)(258,296)(259,291)(260,292)(261,293)(262,294)(263,289)(264,290)
(265,311)(266,312)(267,307)(268,308)(269,309)(270,310)(271,305)(272,306)
(273,303)(274,304)(275,299)(276,300)(277,301)(278,302)(279,297)(280,298)
(281,319)(282,320)(283,315)(284,316)(285,317)(286,318)(287,313)(288,314);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(384)!( 1, 25)( 2, 26)( 3, 28)( 4, 27)( 5, 30)( 6, 29)( 7, 31)
( 8, 32)( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 22)( 14, 21)( 15, 23)
( 16, 24)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 62)( 38, 61)( 39, 63)
( 40, 64)( 41, 49)( 42, 50)( 43, 52)( 44, 51)( 45, 54)( 46, 53)( 47, 55)
( 48, 56)( 65, 89)( 66, 90)( 67, 92)( 68, 91)( 69, 94)( 70, 93)( 71, 95)
( 72, 96)( 73, 81)( 74, 82)( 75, 84)( 76, 83)( 77, 86)( 78, 85)( 79, 87)
( 80, 88)( 97,121)( 98,122)( 99,124)(100,123)(101,126)(102,125)(103,127)
(104,128)(105,113)(106,114)(107,116)(108,115)(109,118)(110,117)(111,119)
(112,120)(129,153)(130,154)(131,156)(132,155)(133,158)(134,157)(135,159)
(136,160)(137,145)(138,146)(139,148)(140,147)(141,150)(142,149)(143,151)
(144,152)(161,185)(162,186)(163,188)(164,187)(165,190)(166,189)(167,191)
(168,192)(169,177)(170,178)(171,180)(172,179)(173,182)(174,181)(175,183)
(176,184)(193,217)(194,218)(195,220)(196,219)(197,222)(198,221)(199,223)
(200,224)(201,209)(202,210)(203,212)(204,211)(205,214)(206,213)(207,215)
(208,216)(225,249)(226,250)(227,252)(228,251)(229,254)(230,253)(231,255)
(232,256)(233,241)(234,242)(235,244)(236,243)(237,246)(238,245)(239,247)
(240,248)(257,281)(258,282)(259,284)(260,283)(261,286)(262,285)(263,287)
(264,288)(265,273)(266,274)(267,276)(268,275)(269,278)(270,277)(271,279)
(272,280)(289,313)(290,314)(291,316)(292,315)(293,318)(294,317)(295,319)
(296,320)(297,305)(298,306)(299,308)(300,307)(301,310)(302,309)(303,311)
(304,312)(321,345)(322,346)(323,348)(324,347)(325,350)(326,349)(327,351)
(328,352)(329,337)(330,338)(331,340)(332,339)(333,342)(334,341)(335,343)
(336,344)(353,377)(354,378)(355,380)(356,379)(357,382)(358,381)(359,383)
(360,384)(361,369)(362,370)(363,372)(364,371)(365,374)(366,373)(367,375)
(368,376);
s1 := Sym(384)!( 1,289)( 2,290)( 3,291)( 4,292)( 5,295)( 6,296)( 7,293)
( 8,294)( 9,300)( 10,299)( 11,298)( 12,297)( 13,302)( 14,301)( 15,304)
( 16,303)( 17,320)( 18,319)( 19,318)( 20,317)( 21,314)( 22,313)( 23,316)
( 24,315)( 25,310)( 26,309)( 27,312)( 28,311)( 29,308)( 30,307)( 31,306)
( 32,305)( 33,353)( 34,354)( 35,355)( 36,356)( 37,359)( 38,360)( 39,357)
( 40,358)( 41,364)( 42,363)( 43,362)( 44,361)( 45,366)( 46,365)( 47,368)
( 48,367)( 49,384)( 50,383)( 51,382)( 52,381)( 53,378)( 54,377)( 55,380)
( 56,379)( 57,374)( 58,373)( 59,376)( 60,375)( 61,372)( 62,371)( 63,370)
( 64,369)( 65,321)( 66,322)( 67,323)( 68,324)( 69,327)( 70,328)( 71,325)
( 72,326)( 73,332)( 74,331)( 75,330)( 76,329)( 77,334)( 78,333)( 79,336)
( 80,335)( 81,352)( 82,351)( 83,350)( 84,349)( 85,346)( 86,345)( 87,348)
( 88,347)( 89,342)( 90,341)( 91,344)( 92,343)( 93,340)( 94,339)( 95,338)
( 96,337)( 97,193)( 98,194)( 99,195)(100,196)(101,199)(102,200)(103,197)
(104,198)(105,204)(106,203)(107,202)(108,201)(109,206)(110,205)(111,208)
(112,207)(113,224)(114,223)(115,222)(116,221)(117,218)(118,217)(119,220)
(120,219)(121,214)(122,213)(123,216)(124,215)(125,212)(126,211)(127,210)
(128,209)(129,257)(130,258)(131,259)(132,260)(133,263)(134,264)(135,261)
(136,262)(137,268)(138,267)(139,266)(140,265)(141,270)(142,269)(143,272)
(144,271)(145,288)(146,287)(147,286)(148,285)(149,282)(150,281)(151,284)
(152,283)(153,278)(154,277)(155,280)(156,279)(157,276)(158,275)(159,274)
(160,273)(161,225)(162,226)(163,227)(164,228)(165,231)(166,232)(167,229)
(168,230)(169,236)(170,235)(171,234)(172,233)(173,238)(174,237)(175,240)
(176,239)(177,256)(178,255)(179,254)(180,253)(181,250)(182,249)(183,252)
(184,251)(185,246)(186,245)(187,248)(188,247)(189,244)(190,243)(191,242)
(192,241);
s2 := Sym(384)!( 1, 71)( 2, 72)( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 65)
( 8, 66)( 9, 87)( 10, 88)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 81)
( 16, 82)( 17, 79)( 18, 80)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 73)
( 24, 74)( 25, 95)( 26, 96)( 27, 91)( 28, 92)( 29, 93)( 30, 94)( 31, 89)
( 32, 90)( 33, 39)( 34, 40)( 41, 55)( 42, 56)( 43, 51)( 44, 52)( 45, 53)
( 46, 54)( 47, 49)( 48, 50)( 57, 63)( 58, 64)( 97,167)( 98,168)( 99,163)
(100,164)(101,165)(102,166)(103,161)(104,162)(105,183)(106,184)(107,179)
(108,180)(109,181)(110,182)(111,177)(112,178)(113,175)(114,176)(115,171)
(116,172)(117,173)(118,174)(119,169)(120,170)(121,191)(122,192)(123,187)
(124,188)(125,189)(126,190)(127,185)(128,186)(129,135)(130,136)(137,151)
(138,152)(139,147)(140,148)(141,149)(142,150)(143,145)(144,146)(153,159)
(154,160)(193,359)(194,360)(195,355)(196,356)(197,357)(198,358)(199,353)
(200,354)(201,375)(202,376)(203,371)(204,372)(205,373)(206,374)(207,369)
(208,370)(209,367)(210,368)(211,363)(212,364)(213,365)(214,366)(215,361)
(216,362)(217,383)(218,384)(219,379)(220,380)(221,381)(222,382)(223,377)
(224,378)(225,327)(226,328)(227,323)(228,324)(229,325)(230,326)(231,321)
(232,322)(233,343)(234,344)(235,339)(236,340)(237,341)(238,342)(239,337)
(240,338)(241,335)(242,336)(243,331)(244,332)(245,333)(246,334)(247,329)
(248,330)(249,351)(250,352)(251,347)(252,348)(253,349)(254,350)(255,345)
(256,346)(257,295)(258,296)(259,291)(260,292)(261,293)(262,294)(263,289)
(264,290)(265,311)(266,312)(267,307)(268,308)(269,309)(270,310)(271,305)
(272,306)(273,303)(274,304)(275,299)(276,300)(277,301)(278,302)(279,297)
(280,298)(281,319)(282,320)(283,315)(284,316)(285,317)(286,318)(287,313)
(288,314);
poly := sub<Sym(384)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope