Polytope of Type {3,4,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,4,8}*768a
if this polytope has a name.
Group : SmallGroup(768,1086051)
Rank : 4
Schlafli Type : {3,4,8}
Number of vertices, edges, etc : 3, 24, 64, 32
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 8
Special Properties :
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {3,4,4}*192a
   16-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9,15)(10,16)(11,14)(12,13)(19,20)(23,24)(25,31)(26,32)
(27,30)(28,29)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,63)
(42,64)(43,62)(44,61)(45,60)(46,59)(47,57)(48,58);;
s1 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)( 9,11)(17,49)(18,52)(19,51)(20,50)
(21,61)(22,64)(23,63)(24,62)(25,59)(26,58)(27,57)(28,60)(29,53)(30,56)(31,55)
(32,54)(34,36)(37,45)(38,48)(39,47)(40,46)(41,43);;
s2 := ( 1,22)( 2,21)( 3,24)( 4,23)( 5,18)( 6,17)( 7,20)( 8,19)( 9,31)(10,32)
(11,29)(12,30)(13,27)(14,28)(15,25)(16,26)(33,54)(34,53)(35,56)(36,55)(37,50)
(38,49)(39,52)(40,51)(41,63)(42,64)(43,61)(44,62)(45,59)(46,60)(47,57)
(48,58);;
s3 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,22)(18,21)(19,24)(20,23)
(25,32)(26,31)(27,30)(28,29)(33,42)(34,41)(35,44)(36,43)(37,45)(38,46)(39,47)
(40,48)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s0*s2*s3*s2*s1*s3*s2*s3*s2*s0*s1*s3*s2*s3*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!( 3, 4)( 7, 8)( 9,15)(10,16)(11,14)(12,13)(19,20)(23,24)(25,31)
(26,32)(27,30)(28,29)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)
(41,63)(42,64)(43,62)(44,61)(45,60)(46,59)(47,57)(48,58);
s1 := Sym(64)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)( 9,11)(17,49)(18,52)(19,51)
(20,50)(21,61)(22,64)(23,63)(24,62)(25,59)(26,58)(27,57)(28,60)(29,53)(30,56)
(31,55)(32,54)(34,36)(37,45)(38,48)(39,47)(40,46)(41,43);
s2 := Sym(64)!( 1,22)( 2,21)( 3,24)( 4,23)( 5,18)( 6,17)( 7,20)( 8,19)( 9,31)
(10,32)(11,29)(12,30)(13,27)(14,28)(15,25)(16,26)(33,54)(34,53)(35,56)(36,55)
(37,50)(38,49)(39,52)(40,51)(41,63)(42,64)(43,61)(44,62)(45,59)(46,60)(47,57)
(48,58);
s3 := Sym(64)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,22)(18,21)(19,24)
(20,23)(25,32)(26,31)(27,30)(28,29)(33,42)(34,41)(35,44)(36,43)(37,45)(38,46)
(39,47)(40,48)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57);
poly := sub<Sym(64)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s0*s2*s1*s0*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s0*s2*s3*s2*s1*s3*s2*s3*s2*s0*s1*s3*s2*s3*s2*s0*s1 >; 
 
References : None.
to this polytope