include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*768h
if this polytope has a name.
Group : SmallGroup(768,1086333)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 48, 192, 64
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*384e
4-fold quotients : {3,8}*192, {6,8}*192c
8-fold quotients : {6,4}*96
16-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
32-fold quotients : {3,4}*24, {6,2}*24
64-fold quotients : {3,2}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s1 := ( 1, 65)( 2, 67)( 3, 66)( 4, 68)( 5, 72)( 6, 70)( 7, 71)( 8, 69)
( 9, 88)( 10, 86)( 11, 87)( 12, 85)( 13, 81)( 14, 83)( 15, 82)( 16, 84)
( 17, 77)( 18, 79)( 19, 78)( 20, 80)( 21, 76)( 22, 74)( 23, 75)( 24, 73)
( 25, 94)( 26, 96)( 27, 93)( 28, 95)( 29, 91)( 30, 89)( 31, 92)( 32, 90)
( 34, 35)( 37, 40)( 41, 56)( 42, 54)( 43, 55)( 44, 53)( 45, 49)( 46, 51)
( 47, 50)( 48, 52)( 57, 62)( 58, 64)( 59, 61)( 60, 63)( 97,161)( 98,163)
( 99,162)(100,164)(101,168)(102,166)(103,167)(104,165)(105,184)(106,182)
(107,183)(108,181)(109,177)(110,179)(111,178)(112,180)(113,173)(114,175)
(115,174)(116,176)(117,172)(118,170)(119,171)(120,169)(121,190)(122,192)
(123,189)(124,191)(125,187)(126,185)(127,188)(128,186)(130,131)(133,136)
(137,152)(138,150)(139,151)(140,149)(141,145)(142,147)(143,146)(144,148)
(153,158)(154,160)(155,157)(156,159);;
s2 := ( 1,112)( 2,111)( 3,110)( 4,109)( 5,108)( 6,107)( 7,106)( 8,105)
( 9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)( 16,103)
( 17,126)( 18,125)( 19,128)( 20,127)( 21,122)( 22,121)( 23,124)( 24,123)
( 25,116)( 26,115)( 27,114)( 28,113)( 29,120)( 30,119)( 31,118)( 32,117)
( 33,144)( 34,143)( 35,142)( 36,141)( 37,140)( 38,139)( 39,138)( 40,137)
( 41,130)( 42,129)( 43,132)( 44,131)( 45,134)( 46,133)( 47,136)( 48,135)
( 49,158)( 50,157)( 51,160)( 52,159)( 53,154)( 54,153)( 55,156)( 56,155)
( 57,148)( 58,147)( 59,146)( 60,145)( 61,152)( 62,151)( 63,150)( 64,149)
( 65,176)( 66,175)( 67,174)( 68,173)( 69,172)( 70,171)( 71,170)( 72,169)
( 73,162)( 74,161)( 75,164)( 76,163)( 77,166)( 78,165)( 79,168)( 80,167)
( 81,190)( 82,189)( 83,192)( 84,191)( 85,186)( 86,185)( 87,188)( 88,187)
( 89,180)( 90,179)( 91,178)( 92,177)( 93,184)( 94,183)( 95,182)( 96,181);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s1 := Sym(192)!( 1, 65)( 2, 67)( 3, 66)( 4, 68)( 5, 72)( 6, 70)( 7, 71)
( 8, 69)( 9, 88)( 10, 86)( 11, 87)( 12, 85)( 13, 81)( 14, 83)( 15, 82)
( 16, 84)( 17, 77)( 18, 79)( 19, 78)( 20, 80)( 21, 76)( 22, 74)( 23, 75)
( 24, 73)( 25, 94)( 26, 96)( 27, 93)( 28, 95)( 29, 91)( 30, 89)( 31, 92)
( 32, 90)( 34, 35)( 37, 40)( 41, 56)( 42, 54)( 43, 55)( 44, 53)( 45, 49)
( 46, 51)( 47, 50)( 48, 52)( 57, 62)( 58, 64)( 59, 61)( 60, 63)( 97,161)
( 98,163)( 99,162)(100,164)(101,168)(102,166)(103,167)(104,165)(105,184)
(106,182)(107,183)(108,181)(109,177)(110,179)(111,178)(112,180)(113,173)
(114,175)(115,174)(116,176)(117,172)(118,170)(119,171)(120,169)(121,190)
(122,192)(123,189)(124,191)(125,187)(126,185)(127,188)(128,186)(130,131)
(133,136)(137,152)(138,150)(139,151)(140,149)(141,145)(142,147)(143,146)
(144,148)(153,158)(154,160)(155,157)(156,159);
s2 := Sym(192)!( 1,112)( 2,111)( 3,110)( 4,109)( 5,108)( 6,107)( 7,106)
( 8,105)( 9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)
( 16,103)( 17,126)( 18,125)( 19,128)( 20,127)( 21,122)( 22,121)( 23,124)
( 24,123)( 25,116)( 26,115)( 27,114)( 28,113)( 29,120)( 30,119)( 31,118)
( 32,117)( 33,144)( 34,143)( 35,142)( 36,141)( 37,140)( 38,139)( 39,138)
( 40,137)( 41,130)( 42,129)( 43,132)( 44,131)( 45,134)( 46,133)( 47,136)
( 48,135)( 49,158)( 50,157)( 51,160)( 52,159)( 53,154)( 54,153)( 55,156)
( 56,155)( 57,148)( 58,147)( 59,146)( 60,145)( 61,152)( 62,151)( 63,150)
( 64,149)( 65,176)( 66,175)( 67,174)( 68,173)( 69,172)( 70,171)( 71,170)
( 72,169)( 73,162)( 74,161)( 75,164)( 76,163)( 77,166)( 78,165)( 79,168)
( 80,167)( 81,190)( 82,189)( 83,192)( 84,191)( 85,186)( 86,185)( 87,188)
( 88,187)( 89,180)( 90,179)( 91,178)( 92,177)( 93,184)( 94,183)( 95,182)
( 96,181);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope