include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12}*768m
if this polytope has a name.
Group : SmallGroup(768,1086335)
Rank : 3
Schlafli Type : {8,12}
Number of vertices, edges, etc : 32, 192, 48
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,6}*384d
4-fold quotients : {8,6}*192a
8-fold quotients : {4,6}*96
16-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
32-fold quotients : {4,3}*24, {2,6}*24
64-fold quotients : {2,3}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,124)( 2,123)( 3,122)( 4,121)( 5,128)( 6,127)( 7,126)( 8,125)
( 9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)( 16,117)
( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)( 24,107)
( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)( 40,157)
( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)( 48,149)
( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)( 56,139)
( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)( 64,131)
( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)( 72,189)
( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)( 80,181)
( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)( 88,171)
( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)( 96,163)
(193,316)(194,315)(195,314)(196,313)(197,320)(198,319)(199,318)(200,317)
(201,308)(202,307)(203,306)(204,305)(205,312)(206,311)(207,310)(208,309)
(209,302)(210,301)(211,304)(212,303)(213,298)(214,297)(215,300)(216,299)
(217,294)(218,293)(219,296)(220,295)(221,290)(222,289)(223,292)(224,291)
(225,348)(226,347)(227,346)(228,345)(229,352)(230,351)(231,350)(232,349)
(233,340)(234,339)(235,338)(236,337)(237,344)(238,343)(239,342)(240,341)
(241,334)(242,333)(243,336)(244,335)(245,330)(246,329)(247,332)(248,331)
(249,326)(250,325)(251,328)(252,327)(253,322)(254,321)(255,324)(256,323)
(257,380)(258,379)(259,378)(260,377)(261,384)(262,383)(263,382)(264,381)
(265,372)(266,371)(267,370)(268,369)(269,376)(270,375)(271,374)(272,373)
(273,366)(274,365)(275,368)(276,367)(277,362)(278,361)(279,364)(280,363)
(281,358)(282,357)(283,360)(284,359)(285,354)(286,353)(287,356)(288,355);;
s1 := ( 1,289)( 2,290)( 3,292)( 4,291)( 5,294)( 6,293)( 7,295)( 8,296)
( 9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)( 16,297)
( 17,313)( 18,314)( 19,316)( 20,315)( 21,318)( 22,317)( 23,319)( 24,320)
( 25,305)( 26,306)( 27,308)( 28,307)( 29,310)( 30,309)( 31,311)( 32,312)
( 33,353)( 34,354)( 35,356)( 36,355)( 37,358)( 38,357)( 39,359)( 40,360)
( 41,368)( 42,367)( 43,365)( 44,366)( 45,363)( 46,364)( 47,362)( 48,361)
( 49,377)( 50,378)( 51,380)( 52,379)( 53,382)( 54,381)( 55,383)( 56,384)
( 57,369)( 58,370)( 59,372)( 60,371)( 61,374)( 62,373)( 63,375)( 64,376)
( 65,321)( 66,322)( 67,324)( 68,323)( 69,326)( 70,325)( 71,327)( 72,328)
( 73,336)( 74,335)( 75,333)( 76,334)( 77,331)( 78,332)( 79,330)( 80,329)
( 81,345)( 82,346)( 83,348)( 84,347)( 85,350)( 86,349)( 87,351)( 88,352)
( 89,337)( 90,338)( 91,340)( 92,339)( 93,342)( 94,341)( 95,343)( 96,344)
( 97,199)( 98,200)( 99,198)(100,197)(101,196)(102,195)(103,193)(104,194)
(105,202)(106,201)(107,203)(108,204)(109,205)(110,206)(111,208)(112,207)
(113,223)(114,224)(115,222)(116,221)(117,220)(118,219)(119,217)(120,218)
(121,215)(122,216)(123,214)(124,213)(125,212)(126,211)(127,209)(128,210)
(129,263)(130,264)(131,262)(132,261)(133,260)(134,259)(135,257)(136,258)
(137,266)(138,265)(139,267)(140,268)(141,269)(142,270)(143,272)(144,271)
(145,287)(146,288)(147,286)(148,285)(149,284)(150,283)(151,281)(152,282)
(153,279)(154,280)(155,278)(156,277)(157,276)(158,275)(159,273)(160,274)
(161,231)(162,232)(163,230)(164,229)(165,228)(166,227)(167,225)(168,226)
(169,234)(170,233)(171,235)(172,236)(173,237)(174,238)(175,240)(176,239)
(177,255)(178,256)(179,254)(180,253)(181,252)(182,251)(183,249)(184,250)
(185,247)(186,248)(187,246)(188,245)(189,244)(190,243)(191,241)(192,242);;
s2 := ( 1, 94)( 2, 96)( 3, 93)( 4, 95)( 5, 91)( 6, 89)( 7, 92)( 8, 90)
( 9, 79)( 10, 77)( 11, 80)( 12, 78)( 13, 74)( 14, 76)( 15, 73)( 16, 75)
( 17, 81)( 18, 83)( 19, 82)( 20, 84)( 21, 88)( 22, 86)( 23, 87)( 24, 85)
( 25, 70)( 26, 72)( 27, 69)( 28, 71)( 29, 67)( 30, 65)( 31, 68)( 32, 66)
( 33, 62)( 34, 64)( 35, 61)( 36, 63)( 37, 59)( 38, 57)( 39, 60)( 40, 58)
( 41, 47)( 42, 45)( 43, 48)( 44, 46)( 50, 51)( 53, 56)( 97,188)( 98,186)
( 99,187)(100,185)(101,189)(102,191)(103,190)(104,192)(105,169)(106,171)
(107,170)(108,172)(109,176)(110,174)(111,175)(112,173)(113,183)(114,181)
(115,184)(116,182)(117,178)(118,180)(119,177)(120,179)(121,164)(122,162)
(123,163)(124,161)(125,165)(126,167)(127,166)(128,168)(129,156)(130,154)
(131,155)(132,153)(133,157)(134,159)(135,158)(136,160)(138,139)(141,144)
(145,151)(146,149)(147,152)(148,150)(193,286)(194,288)(195,285)(196,287)
(197,283)(198,281)(199,284)(200,282)(201,271)(202,269)(203,272)(204,270)
(205,266)(206,268)(207,265)(208,267)(209,273)(210,275)(211,274)(212,276)
(213,280)(214,278)(215,279)(216,277)(217,262)(218,264)(219,261)(220,263)
(221,259)(222,257)(223,260)(224,258)(225,254)(226,256)(227,253)(228,255)
(229,251)(230,249)(231,252)(232,250)(233,239)(234,237)(235,240)(236,238)
(242,243)(245,248)(289,380)(290,378)(291,379)(292,377)(293,381)(294,383)
(295,382)(296,384)(297,361)(298,363)(299,362)(300,364)(301,368)(302,366)
(303,367)(304,365)(305,375)(306,373)(307,376)(308,374)(309,370)(310,372)
(311,369)(312,371)(313,356)(314,354)(315,355)(316,353)(317,357)(318,359)
(319,358)(320,360)(321,348)(322,346)(323,347)(324,345)(325,349)(326,351)
(327,350)(328,352)(330,331)(333,336)(337,343)(338,341)(339,344)(340,342);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(384)!( 1,124)( 2,123)( 3,122)( 4,121)( 5,128)( 6,127)( 7,126)
( 8,125)( 9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)
( 16,117)( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)
( 24,107)( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)
( 40,157)( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)
( 48,149)( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)
( 56,139)( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)
( 64,131)( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)
( 72,189)( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)
( 80,181)( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)
( 88,171)( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)
( 96,163)(193,316)(194,315)(195,314)(196,313)(197,320)(198,319)(199,318)
(200,317)(201,308)(202,307)(203,306)(204,305)(205,312)(206,311)(207,310)
(208,309)(209,302)(210,301)(211,304)(212,303)(213,298)(214,297)(215,300)
(216,299)(217,294)(218,293)(219,296)(220,295)(221,290)(222,289)(223,292)
(224,291)(225,348)(226,347)(227,346)(228,345)(229,352)(230,351)(231,350)
(232,349)(233,340)(234,339)(235,338)(236,337)(237,344)(238,343)(239,342)
(240,341)(241,334)(242,333)(243,336)(244,335)(245,330)(246,329)(247,332)
(248,331)(249,326)(250,325)(251,328)(252,327)(253,322)(254,321)(255,324)
(256,323)(257,380)(258,379)(259,378)(260,377)(261,384)(262,383)(263,382)
(264,381)(265,372)(266,371)(267,370)(268,369)(269,376)(270,375)(271,374)
(272,373)(273,366)(274,365)(275,368)(276,367)(277,362)(278,361)(279,364)
(280,363)(281,358)(282,357)(283,360)(284,359)(285,354)(286,353)(287,356)
(288,355);
s1 := Sym(384)!( 1,289)( 2,290)( 3,292)( 4,291)( 5,294)( 6,293)( 7,295)
( 8,296)( 9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)
( 16,297)( 17,313)( 18,314)( 19,316)( 20,315)( 21,318)( 22,317)( 23,319)
( 24,320)( 25,305)( 26,306)( 27,308)( 28,307)( 29,310)( 30,309)( 31,311)
( 32,312)( 33,353)( 34,354)( 35,356)( 36,355)( 37,358)( 38,357)( 39,359)
( 40,360)( 41,368)( 42,367)( 43,365)( 44,366)( 45,363)( 46,364)( 47,362)
( 48,361)( 49,377)( 50,378)( 51,380)( 52,379)( 53,382)( 54,381)( 55,383)
( 56,384)( 57,369)( 58,370)( 59,372)( 60,371)( 61,374)( 62,373)( 63,375)
( 64,376)( 65,321)( 66,322)( 67,324)( 68,323)( 69,326)( 70,325)( 71,327)
( 72,328)( 73,336)( 74,335)( 75,333)( 76,334)( 77,331)( 78,332)( 79,330)
( 80,329)( 81,345)( 82,346)( 83,348)( 84,347)( 85,350)( 86,349)( 87,351)
( 88,352)( 89,337)( 90,338)( 91,340)( 92,339)( 93,342)( 94,341)( 95,343)
( 96,344)( 97,199)( 98,200)( 99,198)(100,197)(101,196)(102,195)(103,193)
(104,194)(105,202)(106,201)(107,203)(108,204)(109,205)(110,206)(111,208)
(112,207)(113,223)(114,224)(115,222)(116,221)(117,220)(118,219)(119,217)
(120,218)(121,215)(122,216)(123,214)(124,213)(125,212)(126,211)(127,209)
(128,210)(129,263)(130,264)(131,262)(132,261)(133,260)(134,259)(135,257)
(136,258)(137,266)(138,265)(139,267)(140,268)(141,269)(142,270)(143,272)
(144,271)(145,287)(146,288)(147,286)(148,285)(149,284)(150,283)(151,281)
(152,282)(153,279)(154,280)(155,278)(156,277)(157,276)(158,275)(159,273)
(160,274)(161,231)(162,232)(163,230)(164,229)(165,228)(166,227)(167,225)
(168,226)(169,234)(170,233)(171,235)(172,236)(173,237)(174,238)(175,240)
(176,239)(177,255)(178,256)(179,254)(180,253)(181,252)(182,251)(183,249)
(184,250)(185,247)(186,248)(187,246)(188,245)(189,244)(190,243)(191,241)
(192,242);
s2 := Sym(384)!( 1, 94)( 2, 96)( 3, 93)( 4, 95)( 5, 91)( 6, 89)( 7, 92)
( 8, 90)( 9, 79)( 10, 77)( 11, 80)( 12, 78)( 13, 74)( 14, 76)( 15, 73)
( 16, 75)( 17, 81)( 18, 83)( 19, 82)( 20, 84)( 21, 88)( 22, 86)( 23, 87)
( 24, 85)( 25, 70)( 26, 72)( 27, 69)( 28, 71)( 29, 67)( 30, 65)( 31, 68)
( 32, 66)( 33, 62)( 34, 64)( 35, 61)( 36, 63)( 37, 59)( 38, 57)( 39, 60)
( 40, 58)( 41, 47)( 42, 45)( 43, 48)( 44, 46)( 50, 51)( 53, 56)( 97,188)
( 98,186)( 99,187)(100,185)(101,189)(102,191)(103,190)(104,192)(105,169)
(106,171)(107,170)(108,172)(109,176)(110,174)(111,175)(112,173)(113,183)
(114,181)(115,184)(116,182)(117,178)(118,180)(119,177)(120,179)(121,164)
(122,162)(123,163)(124,161)(125,165)(126,167)(127,166)(128,168)(129,156)
(130,154)(131,155)(132,153)(133,157)(134,159)(135,158)(136,160)(138,139)
(141,144)(145,151)(146,149)(147,152)(148,150)(193,286)(194,288)(195,285)
(196,287)(197,283)(198,281)(199,284)(200,282)(201,271)(202,269)(203,272)
(204,270)(205,266)(206,268)(207,265)(208,267)(209,273)(210,275)(211,274)
(212,276)(213,280)(214,278)(215,279)(216,277)(217,262)(218,264)(219,261)
(220,263)(221,259)(222,257)(223,260)(224,258)(225,254)(226,256)(227,253)
(228,255)(229,251)(230,249)(231,252)(232,250)(233,239)(234,237)(235,240)
(236,238)(242,243)(245,248)(289,380)(290,378)(291,379)(292,377)(293,381)
(294,383)(295,382)(296,384)(297,361)(298,363)(299,362)(300,364)(301,368)
(302,366)(303,367)(304,365)(305,375)(306,373)(307,376)(308,374)(309,370)
(310,372)(311,369)(312,371)(313,356)(314,354)(315,355)(316,353)(317,357)
(318,359)(319,358)(320,360)(321,348)(322,346)(323,347)(324,345)(325,349)
(326,351)(327,350)(328,352)(330,331)(333,336)(337,343)(338,341)(339,344)
(340,342);
poly := sub<Sym(384)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope