include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*768j
if this polytope has a name.
Group : SmallGroup(768,1086649)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 48, 192, 64
Order of s0s1s2 : 24
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*384f, {6,8}*384g, {6,4}*384b
4-fold quotients : {6,4}*192b, {6,8}*192b, {6,8}*192c
8-fold quotients : {6,8}*96, {3,8}*96, {6,4}*96
16-fold quotients : {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
24-fold quotients : {2,8}*32
32-fold quotients : {3,4}*24, {6,2}*24
48-fold quotients : {2,4}*16
64-fold quotients : {3,2}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 7)( 6, 8)( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 23)
( 14, 24)( 15, 21)( 16, 22)( 27, 28)( 29, 31)( 30, 32)( 33, 41)( 34, 42)
( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)( 53, 55)
( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)( 63, 69)
( 64, 70)( 75, 76)( 77, 79)( 78, 80)( 81, 89)( 82, 90)( 83, 92)( 84, 91)
( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97, 98)(101,104)(102,103)(105,114)
(106,113)(107,115)(108,116)(109,120)(110,119)(111,118)(112,117)(121,122)
(125,128)(126,127)(129,138)(130,137)(131,139)(132,140)(133,144)(134,143)
(135,142)(136,141)(145,146)(149,152)(150,151)(153,162)(154,161)(155,163)
(156,164)(157,168)(158,167)(159,166)(160,165)(169,170)(173,176)(174,175)
(177,186)(178,185)(179,187)(180,188)(181,192)(182,191)(183,190)(184,189);;
s1 := ( 1, 17)( 2, 18)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 24)( 8, 23)
( 11, 14)( 12, 13)( 15, 16)( 25, 41)( 26, 42)( 27, 46)( 28, 45)( 29, 44)
( 30, 43)( 31, 48)( 32, 47)( 35, 38)( 36, 37)( 39, 40)( 49, 89)( 50, 90)
( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 96)( 56, 95)( 57, 81)( 58, 82)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 88)( 64, 87)( 65, 73)( 66, 74)
( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 80)( 72, 79)( 97,162)( 98,161)
( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,154)(106,153)
(107,157)(108,158)(109,155)(110,156)(111,159)(112,160)(113,146)(114,145)
(115,149)(116,150)(117,147)(118,148)(119,151)(120,152)(121,186)(122,185)
(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,178)(130,177)
(131,181)(132,182)(133,179)(134,180)(135,183)(136,184)(137,170)(138,169)
(139,173)(140,174)(141,171)(142,172)(143,175)(144,176);;
s2 := ( 1,100)( 2, 99)( 3, 97)( 4, 98)( 5,104)( 6,103)( 7,101)( 8,102)
( 9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)( 16,110)
( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)( 24,118)
( 25,124)( 26,123)( 27,121)( 28,122)( 29,128)( 30,127)( 31,125)( 32,126)
( 33,132)( 34,131)( 35,129)( 36,130)( 37,136)( 38,135)( 39,133)( 40,134)
( 41,140)( 42,139)( 43,137)( 44,138)( 45,144)( 46,143)( 47,141)( 48,142)
( 49,172)( 50,171)( 51,169)( 52,170)( 53,176)( 54,175)( 55,173)( 56,174)
( 57,180)( 58,179)( 59,177)( 60,178)( 61,184)( 62,183)( 63,181)( 64,182)
( 65,188)( 66,187)( 67,185)( 68,186)( 69,192)( 70,191)( 71,189)( 72,190)
( 73,148)( 74,147)( 75,145)( 76,146)( 77,152)( 78,151)( 79,149)( 80,150)
( 81,156)( 82,155)( 83,153)( 84,154)( 85,160)( 86,159)( 87,157)( 88,158)
( 89,164)( 90,163)( 91,161)( 92,162)( 93,168)( 94,167)( 95,165)( 96,166);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 7)( 6, 8)( 9, 17)( 10, 18)( 11, 20)( 12, 19)
( 13, 23)( 14, 24)( 15, 21)( 16, 22)( 27, 28)( 29, 31)( 30, 32)( 33, 41)
( 34, 42)( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)
( 53, 55)( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)
( 63, 69)( 64, 70)( 75, 76)( 77, 79)( 78, 80)( 81, 89)( 82, 90)( 83, 92)
( 84, 91)( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97, 98)(101,104)(102,103)
(105,114)(106,113)(107,115)(108,116)(109,120)(110,119)(111,118)(112,117)
(121,122)(125,128)(126,127)(129,138)(130,137)(131,139)(132,140)(133,144)
(134,143)(135,142)(136,141)(145,146)(149,152)(150,151)(153,162)(154,161)
(155,163)(156,164)(157,168)(158,167)(159,166)(160,165)(169,170)(173,176)
(174,175)(177,186)(178,185)(179,187)(180,188)(181,192)(182,191)(183,190)
(184,189);
s1 := Sym(192)!( 1, 17)( 2, 18)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 24)
( 8, 23)( 11, 14)( 12, 13)( 15, 16)( 25, 41)( 26, 42)( 27, 46)( 28, 45)
( 29, 44)( 30, 43)( 31, 48)( 32, 47)( 35, 38)( 36, 37)( 39, 40)( 49, 89)
( 50, 90)( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 96)( 56, 95)( 57, 81)
( 58, 82)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 88)( 64, 87)( 65, 73)
( 66, 74)( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 80)( 72, 79)( 97,162)
( 98,161)( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,154)
(106,153)(107,157)(108,158)(109,155)(110,156)(111,159)(112,160)(113,146)
(114,145)(115,149)(116,150)(117,147)(118,148)(119,151)(120,152)(121,186)
(122,185)(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,178)
(130,177)(131,181)(132,182)(133,179)(134,180)(135,183)(136,184)(137,170)
(138,169)(139,173)(140,174)(141,171)(142,172)(143,175)(144,176);
s2 := Sym(192)!( 1,100)( 2, 99)( 3, 97)( 4, 98)( 5,104)( 6,103)( 7,101)
( 8,102)( 9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)
( 16,110)( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)
( 24,118)( 25,124)( 26,123)( 27,121)( 28,122)( 29,128)( 30,127)( 31,125)
( 32,126)( 33,132)( 34,131)( 35,129)( 36,130)( 37,136)( 38,135)( 39,133)
( 40,134)( 41,140)( 42,139)( 43,137)( 44,138)( 45,144)( 46,143)( 47,141)
( 48,142)( 49,172)( 50,171)( 51,169)( 52,170)( 53,176)( 54,175)( 55,173)
( 56,174)( 57,180)( 58,179)( 59,177)( 60,178)( 61,184)( 62,183)( 63,181)
( 64,182)( 65,188)( 66,187)( 67,185)( 68,186)( 69,192)( 70,191)( 71,189)
( 72,190)( 73,148)( 74,147)( 75,145)( 76,146)( 77,152)( 78,151)( 79,149)
( 80,150)( 81,156)( 82,155)( 83,153)( 84,154)( 85,160)( 86,159)( 87,157)
( 88,158)( 89,164)( 90,163)( 91,161)( 92,162)( 93,168)( 94,167)( 95,165)
( 96,166);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope