Polytope of Type {4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24}*768j
if this polytope has a name.
Group : SmallGroup(768,1087747)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 16, 192, 96
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12}*384d
   4-fold quotients : {4,24}*192b, {4,12}*192b, {4,6}*192b, {4,12}*192c
   8-fold quotients : {4,12}*96a, {4,12}*96b, {4,12}*96c, {4,6}*96
   12-fold quotients : {4,8}*64b
   16-fold quotients : {2,12}*48, {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
   24-fold quotients : {4,4}*32
   32-fold quotients : {4,3}*24, {2,6}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)( 14, 15)
( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 40)( 26, 39)( 27, 38)( 28, 37)
( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 48)( 34, 47)( 35, 46)( 36, 45)
( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 88)( 74, 87)( 75, 86)( 76, 85)
( 77, 92)( 78, 91)( 79, 90)( 80, 89)( 81, 96)( 82, 95)( 83, 94)( 84, 93)
( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)(104,149)
(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)(112,157)
(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)(120,165)
(121,184)(122,183)(123,182)(124,181)(125,188)(126,187)(127,186)(128,185)
(129,192)(130,191)(131,190)(132,189)(133,172)(134,171)(135,170)(136,169)
(137,176)(138,175)(139,174)(140,173)(141,180)(142,179)(143,178)(144,177);;
s1 := (  1,121)(  2,122)(  3,124)(  4,123)(  5,129)(  6,130)(  7,132)(  8,131)
(  9,125)( 10,126)( 11,128)( 12,127)( 13,133)( 14,134)( 15,136)( 16,135)
( 17,141)( 18,142)( 19,144)( 20,143)( 21,137)( 22,138)( 23,140)( 24,139)
( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,105)( 30,106)( 31,108)( 32,107)
( 33,101)( 34,102)( 35,104)( 36,103)( 37,109)( 38,110)( 39,112)( 40,111)
( 41,117)( 42,118)( 43,120)( 44,119)( 45,113)( 46,114)( 47,116)( 48,115)
( 49,169)( 50,170)( 51,172)( 52,171)( 53,177)( 54,178)( 55,180)( 56,179)
( 57,173)( 58,174)( 59,176)( 60,175)( 61,181)( 62,182)( 63,184)( 64,183)
( 65,189)( 66,190)( 67,192)( 68,191)( 69,185)( 70,186)( 71,188)( 72,187)
( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)( 80,155)
( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)( 88,159)
( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)( 96,163);;
s2 := (  1,  9)(  2, 11)(  3, 10)(  4, 12)(  6,  7)( 13, 21)( 14, 23)( 15, 22)
( 16, 24)( 18, 19)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)
( 31, 42)( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 49, 69)( 50, 71)
( 51, 70)( 52, 72)( 53, 65)( 54, 67)( 55, 66)( 56, 68)( 57, 61)( 58, 63)
( 59, 62)( 60, 64)( 73, 81)( 74, 83)( 75, 82)( 76, 84)( 78, 79)( 85, 93)
( 86, 95)( 87, 94)( 88, 96)( 90, 91)( 97,129)( 98,131)( 99,130)(100,132)
(101,125)(102,127)(103,126)(104,128)(105,121)(106,123)(107,122)(108,124)
(109,141)(110,143)(111,142)(112,144)(113,137)(114,139)(115,138)(116,140)
(117,133)(118,135)(119,134)(120,136)(145,189)(146,191)(147,190)(148,192)
(149,185)(150,187)(151,186)(152,188)(153,181)(154,183)(155,182)(156,184)
(157,177)(158,179)(159,178)(160,180)(161,173)(162,175)(163,174)(164,176)
(165,169)(166,171)(167,170)(168,172);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)
( 14, 15)( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 40)( 26, 39)( 27, 38)
( 28, 37)( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 48)( 34, 47)( 35, 46)
( 36, 45)( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)
( 62, 63)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 88)( 74, 87)( 75, 86)
( 76, 85)( 77, 92)( 78, 91)( 79, 90)( 80, 89)( 81, 96)( 82, 95)( 83, 94)
( 84, 93)( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)
(104,149)(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)
(112,157)(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)
(120,165)(121,184)(122,183)(123,182)(124,181)(125,188)(126,187)(127,186)
(128,185)(129,192)(130,191)(131,190)(132,189)(133,172)(134,171)(135,170)
(136,169)(137,176)(138,175)(139,174)(140,173)(141,180)(142,179)(143,178)
(144,177);
s1 := Sym(192)!(  1,121)(  2,122)(  3,124)(  4,123)(  5,129)(  6,130)(  7,132)
(  8,131)(  9,125)( 10,126)( 11,128)( 12,127)( 13,133)( 14,134)( 15,136)
( 16,135)( 17,141)( 18,142)( 19,144)( 20,143)( 21,137)( 22,138)( 23,140)
( 24,139)( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,105)( 30,106)( 31,108)
( 32,107)( 33,101)( 34,102)( 35,104)( 36,103)( 37,109)( 38,110)( 39,112)
( 40,111)( 41,117)( 42,118)( 43,120)( 44,119)( 45,113)( 46,114)( 47,116)
( 48,115)( 49,169)( 50,170)( 51,172)( 52,171)( 53,177)( 54,178)( 55,180)
( 56,179)( 57,173)( 58,174)( 59,176)( 60,175)( 61,181)( 62,182)( 63,184)
( 64,183)( 65,189)( 66,190)( 67,192)( 68,191)( 69,185)( 70,186)( 71,188)
( 72,187)( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)
( 80,155)( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)
( 88,159)( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)
( 96,163);
s2 := Sym(192)!(  1,  9)(  2, 11)(  3, 10)(  4, 12)(  6,  7)( 13, 21)( 14, 23)
( 15, 22)( 16, 24)( 18, 19)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)
( 30, 43)( 31, 42)( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 49, 69)
( 50, 71)( 51, 70)( 52, 72)( 53, 65)( 54, 67)( 55, 66)( 56, 68)( 57, 61)
( 58, 63)( 59, 62)( 60, 64)( 73, 81)( 74, 83)( 75, 82)( 76, 84)( 78, 79)
( 85, 93)( 86, 95)( 87, 94)( 88, 96)( 90, 91)( 97,129)( 98,131)( 99,130)
(100,132)(101,125)(102,127)(103,126)(104,128)(105,121)(106,123)(107,122)
(108,124)(109,141)(110,143)(111,142)(112,144)(113,137)(114,139)(115,138)
(116,140)(117,133)(118,135)(119,134)(120,136)(145,189)(146,191)(147,190)
(148,192)(149,185)(150,187)(151,186)(152,188)(153,181)(154,183)(155,182)
(156,184)(157,177)(158,179)(159,178)(160,180)(161,173)(162,175)(163,174)
(164,176)(165,169)(166,171)(167,170)(168,172);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope