Polytope of Type {4,24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24,4}*768l
if this polytope has a name.
Group : SmallGroup(768,1087747)
Rank : 4
Schlafli Type : {4,24,4}
Number of vertices, edges, etc : 4, 48, 48, 4
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,4}*384d
   4-fold quotients : {4,12,2}*192b, {4,6,4}*192c
   8-fold quotients : {4,6,2}*96c
   16-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 16)(  2, 15)(  3, 14)(  4, 13)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 24)( 10, 23)( 11, 22)( 12, 21)( 25, 40)( 26, 39)( 27, 38)( 28, 37)
( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 48)( 34, 47)( 35, 46)( 36, 45)
( 49, 64)( 50, 63)( 51, 62)( 52, 61)( 53, 68)( 54, 67)( 55, 66)( 56, 65)
( 57, 72)( 58, 71)( 59, 70)( 60, 69)( 73, 88)( 74, 87)( 75, 86)( 76, 85)
( 77, 92)( 78, 91)( 79, 90)( 80, 89)( 81, 96)( 82, 95)( 83, 94)( 84, 93)
( 97,112)( 98,111)( 99,110)(100,109)(101,116)(102,115)(103,114)(104,113)
(105,120)(106,119)(107,118)(108,117)(121,136)(122,135)(123,134)(124,133)
(125,140)(126,139)(127,138)(128,137)(129,144)(130,143)(131,142)(132,141)
(145,160)(146,159)(147,158)(148,157)(149,164)(150,163)(151,162)(152,161)
(153,168)(154,167)(155,166)(156,165)(169,184)(170,183)(171,182)(172,181)
(173,188)(174,187)(175,186)(176,185)(177,192)(178,191)(179,190)(180,189);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 25, 37)( 26, 38)( 27, 40)( 28, 39)( 29, 45)( 30, 46)
( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)( 36, 43)( 49, 61)( 50, 62)
( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)
( 59, 68)( 60, 67)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)( 87, 88)
( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 97,121)( 98,122)( 99,124)(100,123)
(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)
(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)(116,143)
(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)(148,183)
(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)
(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)(164,179)
(165,173)(166,174)(167,176)(168,175);;
s2 := (  1,129)(  2,131)(  3,130)(  4,132)(  5,125)(  6,127)(  7,126)(  8,128)
(  9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)( 16,144)
( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)( 24,136)
( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)( 32,104)
( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)( 40,120)
( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)( 48,112)
( 49,177)( 50,179)( 51,178)( 52,180)( 53,173)( 54,175)( 55,174)( 56,176)
( 57,169)( 58,171)( 59,170)( 60,172)( 61,189)( 62,191)( 63,190)( 64,192)
( 65,185)( 66,187)( 67,186)( 68,188)( 69,181)( 70,183)( 71,182)( 72,184)
( 73,153)( 74,155)( 75,154)( 76,156)( 77,149)( 78,151)( 79,150)( 80,152)
( 81,145)( 82,147)( 83,146)( 84,148)( 85,165)( 86,167)( 87,166)( 88,168)
( 89,161)( 90,163)( 91,162)( 92,164)( 93,157)( 94,159)( 95,158)( 96,160);;
s3 := ( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 41)( 30, 42)( 31, 43)( 32, 44)
( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 73, 85)( 74, 86)( 75, 87)( 76, 88)
( 77, 89)( 78, 90)( 79, 91)( 80, 92)( 81, 93)( 82, 94)( 83, 95)( 84, 96)
( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)(104,152)
(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)
(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)
(121,181)(122,182)(123,183)(124,184)(125,185)(126,186)(127,187)(128,188)
(129,189)(130,190)(131,191)(132,192)(133,169)(134,170)(135,171)(136,172)
(137,173)(138,174)(139,175)(140,176)(141,177)(142,178)(143,179)(144,180);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s1*s0*s1*s2*s0*s1*s2*s0*s3*s2*s1*s2*s3, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1, 16)(  2, 15)(  3, 14)(  4, 13)(  5, 20)(  6, 19)(  7, 18)
(  8, 17)(  9, 24)( 10, 23)( 11, 22)( 12, 21)( 25, 40)( 26, 39)( 27, 38)
( 28, 37)( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 48)( 34, 47)( 35, 46)
( 36, 45)( 49, 64)( 50, 63)( 51, 62)( 52, 61)( 53, 68)( 54, 67)( 55, 66)
( 56, 65)( 57, 72)( 58, 71)( 59, 70)( 60, 69)( 73, 88)( 74, 87)( 75, 86)
( 76, 85)( 77, 92)( 78, 91)( 79, 90)( 80, 89)( 81, 96)( 82, 95)( 83, 94)
( 84, 93)( 97,112)( 98,111)( 99,110)(100,109)(101,116)(102,115)(103,114)
(104,113)(105,120)(106,119)(107,118)(108,117)(121,136)(122,135)(123,134)
(124,133)(125,140)(126,139)(127,138)(128,137)(129,144)(130,143)(131,142)
(132,141)(145,160)(146,159)(147,158)(148,157)(149,164)(150,163)(151,162)
(152,161)(153,168)(154,167)(155,166)(156,165)(169,184)(170,183)(171,182)
(172,181)(173,188)(174,187)(175,186)(176,185)(177,192)(178,191)(179,190)
(180,189);
s1 := Sym(192)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 25, 37)( 26, 38)( 27, 40)( 28, 39)( 29, 45)
( 30, 46)( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)( 36, 43)( 49, 61)
( 50, 62)( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)
( 58, 66)( 59, 68)( 60, 67)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)
( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 97,121)( 98,122)( 99,124)
(100,123)(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)
(108,127)(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)
(116,143)(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)
(148,183)(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)
(156,187)(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)
(164,179)(165,173)(166,174)(167,176)(168,175);
s2 := Sym(192)!(  1,129)(  2,131)(  3,130)(  4,132)(  5,125)(  6,127)(  7,126)
(  8,128)(  9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)
( 16,144)( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)
( 24,136)( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)
( 32,104)( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)
( 40,120)( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)
( 48,112)( 49,177)( 50,179)( 51,178)( 52,180)( 53,173)( 54,175)( 55,174)
( 56,176)( 57,169)( 58,171)( 59,170)( 60,172)( 61,189)( 62,191)( 63,190)
( 64,192)( 65,185)( 66,187)( 67,186)( 68,188)( 69,181)( 70,183)( 71,182)
( 72,184)( 73,153)( 74,155)( 75,154)( 76,156)( 77,149)( 78,151)( 79,150)
( 80,152)( 81,145)( 82,147)( 83,146)( 84,148)( 85,165)( 86,167)( 87,166)
( 88,168)( 89,161)( 90,163)( 91,162)( 92,164)( 93,157)( 94,159)( 95,158)
( 96,160);
s3 := Sym(192)!( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 41)( 30, 42)( 31, 43)
( 32, 44)( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 73, 85)( 74, 86)( 75, 87)
( 76, 88)( 77, 89)( 78, 90)( 79, 91)( 80, 92)( 81, 93)( 82, 94)( 83, 95)
( 84, 96)( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)
(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)
(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)
(120,168)(121,181)(122,182)(123,183)(124,184)(125,185)(126,186)(127,187)
(128,188)(129,189)(130,190)(131,191)(132,192)(133,169)(134,170)(135,171)
(136,172)(137,173)(138,174)(139,175)(140,176)(141,177)(142,178)(143,179)
(144,180);
poly := sub<Sym(192)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s1*s0*s1*s2*s0*s1*s2*s0*s3*s2*s1*s2*s3, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope