include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,24}*768e
if this polytope has a name.
Group : SmallGroup(768,1087796)
Rank : 3
Schlafli Type : {12,24}
Number of vertices, edges, etc : 16, 192, 32
Order of s0s1s2 : 8
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*384a
4-fold quotients : {6,12}*192a, {12,6}*192a
8-fold quotients : {6,6}*96
12-fold quotients : {4,8}*64b
16-fold quotients : {3,6}*48, {6,3}*48
24-fold quotients : {4,4}*32
32-fold quotients : {3,3}*24
48-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 39, 40)
( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 64)( 52, 63)
( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)( 59, 68)( 60, 67)
( 73, 85)( 74, 86)( 75, 88)( 76, 87)( 77, 93)( 78, 94)( 79, 96)( 80, 95)
( 81, 89)( 82, 90)( 83, 92)( 84, 91)( 97,121)( 98,122)( 99,124)(100,123)
(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)
(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)(116,143)
(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)(148,183)
(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)
(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)(164,179)
(165,173)(166,174)(167,176)(168,175);;
s1 := ( 1,129)( 2,131)( 3,130)( 4,132)( 5,125)( 6,127)( 7,126)( 8,128)
( 9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)( 16,144)
( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)( 24,136)
( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)( 32,104)
( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)( 40,120)
( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)( 48,112)
( 49,189)( 50,191)( 51,190)( 52,192)( 53,185)( 54,187)( 55,186)( 56,188)
( 57,181)( 58,183)( 59,182)( 60,184)( 61,177)( 62,179)( 63,178)( 64,180)
( 65,173)( 66,175)( 67,174)( 68,176)( 69,169)( 70,171)( 71,170)( 72,172)
( 73,165)( 74,167)( 75,166)( 76,168)( 77,161)( 78,163)( 79,162)( 80,164)
( 81,157)( 82,159)( 83,158)( 84,160)( 85,153)( 86,155)( 87,154)( 88,156)
( 89,149)( 90,151)( 91,150)( 92,152)( 93,145)( 94,147)( 95,146)( 96,148);;
s2 := ( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 14)( 17, 22)( 18, 21)
( 19, 23)( 20, 24)( 25, 38)( 26, 37)( 27, 39)( 28, 40)( 29, 46)( 30, 45)
( 31, 47)( 32, 48)( 33, 42)( 34, 41)( 35, 43)( 36, 44)( 49, 50)( 53, 58)
( 54, 57)( 55, 59)( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)( 68, 72)
( 73, 86)( 74, 85)( 75, 87)( 76, 88)( 77, 94)( 78, 93)( 79, 95)( 80, 96)
( 81, 90)( 82, 89)( 83, 91)( 84, 92)( 97,182)( 98,181)( 99,183)(100,184)
(101,190)(102,189)(103,191)(104,192)(105,186)(106,185)(107,187)(108,188)
(109,170)(110,169)(111,171)(112,172)(113,178)(114,177)(115,179)(116,180)
(117,174)(118,173)(119,175)(120,176)(121,146)(122,145)(123,147)(124,148)
(125,154)(126,153)(127,155)(128,156)(129,150)(130,149)(131,151)(132,152)
(133,158)(134,157)(135,159)(136,160)(137,166)(138,165)(139,167)(140,168)
(141,162)(142,161)(143,163)(144,164);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 64)
( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)( 59, 68)
( 60, 67)( 73, 85)( 74, 86)( 75, 88)( 76, 87)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91)( 97,121)( 98,122)( 99,124)
(100,123)(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)
(108,127)(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)
(116,143)(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)
(148,183)(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)
(156,187)(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)
(164,179)(165,173)(166,174)(167,176)(168,175);
s1 := Sym(192)!( 1,129)( 2,131)( 3,130)( 4,132)( 5,125)( 6,127)( 7,126)
( 8,128)( 9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)
( 16,144)( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)
( 24,136)( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)
( 32,104)( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)
( 40,120)( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)
( 48,112)( 49,189)( 50,191)( 51,190)( 52,192)( 53,185)( 54,187)( 55,186)
( 56,188)( 57,181)( 58,183)( 59,182)( 60,184)( 61,177)( 62,179)( 63,178)
( 64,180)( 65,173)( 66,175)( 67,174)( 68,176)( 69,169)( 70,171)( 71,170)
( 72,172)( 73,165)( 74,167)( 75,166)( 76,168)( 77,161)( 78,163)( 79,162)
( 80,164)( 81,157)( 82,159)( 83,158)( 84,160)( 85,153)( 86,155)( 87,154)
( 88,156)( 89,149)( 90,151)( 91,150)( 92,152)( 93,145)( 94,147)( 95,146)
( 96,148);
s2 := Sym(192)!( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 14)( 17, 22)
( 18, 21)( 19, 23)( 20, 24)( 25, 38)( 26, 37)( 27, 39)( 28, 40)( 29, 46)
( 30, 45)( 31, 47)( 32, 48)( 33, 42)( 34, 41)( 35, 43)( 36, 44)( 49, 50)
( 53, 58)( 54, 57)( 55, 59)( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)
( 68, 72)( 73, 86)( 74, 85)( 75, 87)( 76, 88)( 77, 94)( 78, 93)( 79, 95)
( 80, 96)( 81, 90)( 82, 89)( 83, 91)( 84, 92)( 97,182)( 98,181)( 99,183)
(100,184)(101,190)(102,189)(103,191)(104,192)(105,186)(106,185)(107,187)
(108,188)(109,170)(110,169)(111,171)(112,172)(113,178)(114,177)(115,179)
(116,180)(117,174)(118,173)(119,175)(120,176)(121,146)(122,145)(123,147)
(124,148)(125,154)(126,153)(127,155)(128,156)(129,150)(130,149)(131,151)
(132,152)(133,158)(134,157)(135,159)(136,160)(137,166)(138,165)(139,167)
(140,168)(141,162)(142,161)(143,163)(144,164);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope