Polytope of Type {4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12}*768f
if this polytope has a name.
Group : SmallGroup(768,1087808)
Rank : 3
Schlafli Type : {4,12}
Number of vertices, edges, etc : 32, 192, 96
Order of s0s1s2 : 24
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12}*384d
   4-fold quotients : {4,12}*192b, {4,6}*192b, {4,12}*192c
   8-fold quotients : {4,12}*96a, {4,12}*96b, {4,12}*96c, {4,6}*96
   16-fold quotients : {2,12}*48, {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
   24-fold quotients : {4,4}*32
   32-fold quotients : {4,3}*24, {2,6}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 31)(  2, 32)(  3, 29)(  4, 30)(  5, 28)(  6, 27)(  7, 26)(  8, 25)
(  9, 39)( 10, 40)( 11, 37)( 12, 38)( 13, 36)( 14, 35)( 15, 34)( 16, 33)
( 17, 47)( 18, 48)( 19, 45)( 20, 46)( 21, 44)( 22, 43)( 23, 42)( 24, 41)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)( 56, 74)
( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 83)( 62, 84)( 63, 81)( 64, 82)
( 65, 96)( 66, 95)( 67, 94)( 68, 93)( 69, 91)( 70, 92)( 71, 89)( 72, 90)
( 97,175)( 98,176)( 99,173)(100,174)(101,172)(102,171)(103,170)(104,169)
(105,183)(106,184)(107,181)(108,182)(109,180)(110,179)(111,178)(112,177)
(113,191)(114,192)(115,189)(116,190)(117,188)(118,187)(119,186)(120,185)
(121,152)(122,151)(123,150)(124,149)(125,147)(126,148)(127,145)(128,146)
(129,160)(130,159)(131,158)(132,157)(133,155)(134,156)(135,153)(136,154)
(137,168)(138,167)(139,166)(140,165)(141,163)(142,164)(143,161)(144,162);;
s1 := (  1,121)(  2,122)(  3,124)(  4,123)(  5,127)(  6,128)(  7,125)(  8,126)
(  9,137)( 10,138)( 11,140)( 12,139)( 13,143)( 14,144)( 15,141)( 16,142)
( 17,129)( 18,130)( 19,132)( 20,131)( 21,135)( 22,136)( 23,133)( 24,134)
( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,103)( 30,104)( 31,101)( 32,102)
( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)( 40,118)
( 41,105)( 42,106)( 43,108)( 44,107)( 45,111)( 46,112)( 47,109)( 48,110)
( 49,170)( 50,169)( 51,171)( 52,172)( 53,176)( 54,175)( 55,174)( 56,173)
( 57,186)( 58,185)( 59,187)( 60,188)( 61,192)( 62,191)( 63,190)( 64,189)
( 65,178)( 66,177)( 67,179)( 68,180)( 69,184)( 70,183)( 71,182)( 72,181)
( 73,146)( 74,145)( 75,147)( 76,148)( 77,152)( 78,151)( 79,150)( 80,149)
( 81,162)( 82,161)( 83,163)( 84,164)( 85,168)( 86,167)( 87,166)( 88,165)
( 89,154)( 90,153)( 91,155)( 92,156)( 93,160)( 94,159)( 95,158)( 96,157);;
s2 := (  1, 41)(  2, 42)(  3, 46)(  4, 45)(  5, 44)(  6, 43)(  7, 48)(  8, 47)
(  9, 33)( 10, 34)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 40)( 16, 39)
( 17, 25)( 18, 26)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 32)( 24, 31)
( 49, 90)( 50, 89)( 51, 93)( 52, 94)( 53, 91)( 54, 92)( 55, 95)( 56, 96)
( 57, 82)( 58, 81)( 59, 85)( 60, 86)( 61, 83)( 62, 84)( 63, 87)( 64, 88)
( 65, 74)( 66, 73)( 67, 77)( 68, 78)( 69, 75)( 70, 76)( 71, 79)( 72, 80)
( 97,113)( 98,114)( 99,118)(100,117)(101,116)(102,115)(103,120)(104,119)
(107,110)(108,109)(111,112)(121,137)(122,138)(123,142)(124,141)(125,140)
(126,139)(127,144)(128,143)(131,134)(132,133)(135,136)(145,162)(146,161)
(147,165)(148,166)(149,163)(150,164)(151,167)(152,168)(153,154)(155,157)
(156,158)(169,186)(170,185)(171,189)(172,190)(173,187)(174,188)(175,191)
(176,192)(177,178)(179,181)(180,182);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1, 31)(  2, 32)(  3, 29)(  4, 30)(  5, 28)(  6, 27)(  7, 26)
(  8, 25)(  9, 39)( 10, 40)( 11, 37)( 12, 38)( 13, 36)( 14, 35)( 15, 34)
( 16, 33)( 17, 47)( 18, 48)( 19, 45)( 20, 46)( 21, 44)( 22, 43)( 23, 42)
( 24, 41)( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)
( 56, 74)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 83)( 62, 84)( 63, 81)
( 64, 82)( 65, 96)( 66, 95)( 67, 94)( 68, 93)( 69, 91)( 70, 92)( 71, 89)
( 72, 90)( 97,175)( 98,176)( 99,173)(100,174)(101,172)(102,171)(103,170)
(104,169)(105,183)(106,184)(107,181)(108,182)(109,180)(110,179)(111,178)
(112,177)(113,191)(114,192)(115,189)(116,190)(117,188)(118,187)(119,186)
(120,185)(121,152)(122,151)(123,150)(124,149)(125,147)(126,148)(127,145)
(128,146)(129,160)(130,159)(131,158)(132,157)(133,155)(134,156)(135,153)
(136,154)(137,168)(138,167)(139,166)(140,165)(141,163)(142,164)(143,161)
(144,162);
s1 := Sym(192)!(  1,121)(  2,122)(  3,124)(  4,123)(  5,127)(  6,128)(  7,125)
(  8,126)(  9,137)( 10,138)( 11,140)( 12,139)( 13,143)( 14,144)( 15,141)
( 16,142)( 17,129)( 18,130)( 19,132)( 20,131)( 21,135)( 22,136)( 23,133)
( 24,134)( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,103)( 30,104)( 31,101)
( 32,102)( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)
( 40,118)( 41,105)( 42,106)( 43,108)( 44,107)( 45,111)( 46,112)( 47,109)
( 48,110)( 49,170)( 50,169)( 51,171)( 52,172)( 53,176)( 54,175)( 55,174)
( 56,173)( 57,186)( 58,185)( 59,187)( 60,188)( 61,192)( 62,191)( 63,190)
( 64,189)( 65,178)( 66,177)( 67,179)( 68,180)( 69,184)( 70,183)( 71,182)
( 72,181)( 73,146)( 74,145)( 75,147)( 76,148)( 77,152)( 78,151)( 79,150)
( 80,149)( 81,162)( 82,161)( 83,163)( 84,164)( 85,168)( 86,167)( 87,166)
( 88,165)( 89,154)( 90,153)( 91,155)( 92,156)( 93,160)( 94,159)( 95,158)
( 96,157);
s2 := Sym(192)!(  1, 41)(  2, 42)(  3, 46)(  4, 45)(  5, 44)(  6, 43)(  7, 48)
(  8, 47)(  9, 33)( 10, 34)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 40)
( 16, 39)( 17, 25)( 18, 26)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 32)
( 24, 31)( 49, 90)( 50, 89)( 51, 93)( 52, 94)( 53, 91)( 54, 92)( 55, 95)
( 56, 96)( 57, 82)( 58, 81)( 59, 85)( 60, 86)( 61, 83)( 62, 84)( 63, 87)
( 64, 88)( 65, 74)( 66, 73)( 67, 77)( 68, 78)( 69, 75)( 70, 76)( 71, 79)
( 72, 80)( 97,113)( 98,114)( 99,118)(100,117)(101,116)(102,115)(103,120)
(104,119)(107,110)(108,109)(111,112)(121,137)(122,138)(123,142)(124,141)
(125,140)(126,139)(127,144)(128,143)(131,134)(132,133)(135,136)(145,162)
(146,161)(147,165)(148,166)(149,163)(150,164)(151,167)(152,168)(153,154)
(155,157)(156,158)(169,186)(170,185)(171,189)(172,190)(173,187)(174,188)
(175,191)(176,192)(177,178)(179,181)(180,182);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope