Polytope of Type {12,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,3,4}*768b
if this polytope has a name.
Group : SmallGroup(768,1088556)
Rank : 4
Schlafli Type : {12,3,4}
Number of vertices, edges, etc : 16, 48, 16, 8
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,3,4}*384b
   4-fold quotients : {3,3,4}*192
   8-fold quotients : {6,3,2}*96
   16-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,103)(  6,104)(  7,101)(  8,102)
(  9,108)( 10,107)( 11,106)( 12,105)( 13,110)( 14,109)( 15,112)( 16,111)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,122)( 22,121)( 23,124)( 24,123)
( 25,118)( 26,117)( 27,120)( 28,119)( 29,116)( 30,115)( 31,114)( 32,113)
( 33,161)( 34,162)( 35,163)( 36,164)( 37,167)( 38,168)( 39,165)( 40,166)
( 41,172)( 42,171)( 43,170)( 44,169)( 45,174)( 46,173)( 47,176)( 48,175)
( 49,192)( 50,191)( 51,190)( 52,189)( 53,186)( 54,185)( 55,188)( 56,187)
( 57,182)( 58,181)( 59,184)( 60,183)( 61,180)( 62,179)( 63,178)( 64,177)
( 65,129)( 66,130)( 67,131)( 68,132)( 69,135)( 70,136)( 71,133)( 72,134)
( 73,140)( 74,139)( 75,138)( 76,137)( 77,142)( 78,141)( 79,144)( 80,143)
( 81,160)( 82,159)( 83,158)( 84,157)( 85,154)( 86,153)( 87,156)( 88,155)
( 89,150)( 90,149)( 91,152)( 92,151)( 93,148)( 94,147)( 95,146)( 96,145)
(193,290)(194,289)(195,292)(196,291)(197,296)(198,295)(199,294)(200,293)
(201,299)(202,300)(203,297)(204,298)(205,301)(206,302)(207,303)(208,304)
(209,319)(210,320)(211,317)(212,318)(213,313)(214,314)(215,315)(216,316)
(217,309)(218,310)(219,311)(220,312)(221,307)(222,308)(223,305)(224,306)
(225,354)(226,353)(227,356)(228,355)(229,360)(230,359)(231,358)(232,357)
(233,363)(234,364)(235,361)(236,362)(237,365)(238,366)(239,367)(240,368)
(241,383)(242,384)(243,381)(244,382)(245,377)(246,378)(247,379)(248,380)
(249,373)(250,374)(251,375)(252,376)(253,371)(254,372)(255,369)(256,370)
(257,322)(258,321)(259,324)(260,323)(261,328)(262,327)(263,326)(264,325)
(265,331)(266,332)(267,329)(268,330)(269,333)(270,334)(271,335)(272,336)
(273,351)(274,352)(275,349)(276,350)(277,345)(278,346)(279,347)(280,348)
(281,341)(282,342)(283,343)(284,344)(285,339)(286,340)(287,337)(288,338);;
s1 := (  1,354)(  2,353)(  3,358)(  4,357)(  5,356)(  6,355)(  7,360)(  8,359)
(  9,373)( 10,374)( 11,369)( 12,370)( 13,375)( 14,376)( 15,371)( 16,372)
( 17,363)( 18,364)( 19,367)( 20,368)( 21,361)( 22,362)( 23,365)( 24,366)
( 25,383)( 26,384)( 27,379)( 28,380)( 29,381)( 30,382)( 31,377)( 32,378)
( 33,322)( 34,321)( 35,326)( 36,325)( 37,324)( 38,323)( 39,328)( 40,327)
( 41,341)( 42,342)( 43,337)( 44,338)( 45,343)( 46,344)( 47,339)( 48,340)
( 49,331)( 50,332)( 51,335)( 52,336)( 53,329)( 54,330)( 55,333)( 56,334)
( 57,351)( 58,352)( 59,347)( 60,348)( 61,349)( 62,350)( 63,345)( 64,346)
( 65,290)( 66,289)( 67,294)( 68,293)( 69,292)( 70,291)( 71,296)( 72,295)
( 73,309)( 74,310)( 75,305)( 76,306)( 77,311)( 78,312)( 79,307)( 80,308)
( 81,299)( 82,300)( 83,303)( 84,304)( 85,297)( 86,298)( 87,301)( 88,302)
( 89,319)( 90,320)( 91,315)( 92,316)( 93,317)( 94,318)( 95,313)( 96,314)
( 97,258)( 98,257)( 99,262)(100,261)(101,260)(102,259)(103,264)(104,263)
(105,277)(106,278)(107,273)(108,274)(109,279)(110,280)(111,275)(112,276)
(113,267)(114,268)(115,271)(116,272)(117,265)(118,266)(119,269)(120,270)
(121,287)(122,288)(123,283)(124,284)(125,285)(126,286)(127,281)(128,282)
(129,226)(130,225)(131,230)(132,229)(133,228)(134,227)(135,232)(136,231)
(137,245)(138,246)(139,241)(140,242)(141,247)(142,248)(143,243)(144,244)
(145,235)(146,236)(147,239)(148,240)(149,233)(150,234)(151,237)(152,238)
(153,255)(154,256)(155,251)(156,252)(157,253)(158,254)(159,249)(160,250)
(161,194)(162,193)(163,198)(164,197)(165,196)(166,195)(167,200)(168,199)
(169,213)(170,214)(171,209)(172,210)(173,215)(174,216)(175,211)(176,212)
(177,203)(178,204)(179,207)(180,208)(181,201)(182,202)(183,205)(184,206)
(185,223)(186,224)(187,219)(188,220)(189,221)(190,222)(191,217)(192,218);;
s2 := (  1,304)(  2,303)(  3,302)(  4,301)(  5,297)(  6,298)(  7,299)(  8,300)
(  9,293)( 10,294)( 11,295)( 12,296)( 13,292)( 14,291)( 15,290)( 16,289)
( 17,306)( 18,305)( 19,308)( 20,307)( 21,311)( 22,312)( 23,309)( 24,310)
( 25,316)( 26,315)( 27,314)( 28,313)( 29,317)( 30,318)( 31,319)( 32,320)
( 33,368)( 34,367)( 35,366)( 36,365)( 37,361)( 38,362)( 39,363)( 40,364)
( 41,357)( 42,358)( 43,359)( 44,360)( 45,356)( 46,355)( 47,354)( 48,353)
( 49,370)( 50,369)( 51,372)( 52,371)( 53,375)( 54,376)( 55,373)( 56,374)
( 57,380)( 58,379)( 59,378)( 60,377)( 61,381)( 62,382)( 63,383)( 64,384)
( 65,336)( 66,335)( 67,334)( 68,333)( 69,329)( 70,330)( 71,331)( 72,332)
( 73,325)( 74,326)( 75,327)( 76,328)( 77,324)( 78,323)( 79,322)( 80,321)
( 81,338)( 82,337)( 83,340)( 84,339)( 85,343)( 86,344)( 87,341)( 88,342)
( 89,348)( 90,347)( 91,346)( 92,345)( 93,349)( 94,350)( 95,351)( 96,352)
( 97,208)( 98,207)( 99,206)(100,205)(101,201)(102,202)(103,203)(104,204)
(105,197)(106,198)(107,199)(108,200)(109,196)(110,195)(111,194)(112,193)
(113,210)(114,209)(115,212)(116,211)(117,215)(118,216)(119,213)(120,214)
(121,220)(122,219)(123,218)(124,217)(125,221)(126,222)(127,223)(128,224)
(129,272)(130,271)(131,270)(132,269)(133,265)(134,266)(135,267)(136,268)
(137,261)(138,262)(139,263)(140,264)(141,260)(142,259)(143,258)(144,257)
(145,274)(146,273)(147,276)(148,275)(149,279)(150,280)(151,277)(152,278)
(153,284)(154,283)(155,282)(156,281)(157,285)(158,286)(159,287)(160,288)
(161,240)(162,239)(163,238)(164,237)(165,233)(166,234)(167,235)(168,236)
(169,229)(170,230)(171,231)(172,232)(173,228)(174,227)(175,226)(176,225)
(177,242)(178,241)(179,244)(180,243)(181,247)(182,248)(183,245)(184,246)
(185,252)(186,251)(187,250)(188,249)(189,253)(190,254)(191,255)(192,256);;
s3 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)(  8,104)
(  9,108)( 10,107)( 11,106)( 12,105)( 13,112)( 14,111)( 15,110)( 16,109)
( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)( 24,115)
( 25,128)( 26,127)( 27,126)( 28,125)( 29,124)( 30,123)( 31,122)( 32,121)
( 33,129)( 34,130)( 35,131)( 36,132)( 37,133)( 38,134)( 39,135)( 40,136)
( 41,140)( 42,139)( 43,138)( 44,137)( 45,144)( 46,143)( 47,142)( 48,141)
( 49,150)( 50,149)( 51,152)( 52,151)( 53,146)( 54,145)( 55,148)( 56,147)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,156)( 62,155)( 63,154)( 64,153)
( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)( 72,168)
( 73,172)( 74,171)( 75,170)( 76,169)( 77,176)( 78,175)( 79,174)( 80,173)
( 81,182)( 82,181)( 83,184)( 84,183)( 85,178)( 86,177)( 87,180)( 88,179)
( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)( 96,185)
(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)(200,296)
(201,300)(202,299)(203,298)(204,297)(205,304)(206,303)(207,302)(208,301)
(209,310)(210,309)(211,312)(212,311)(213,306)(214,305)(215,308)(216,307)
(217,320)(218,319)(219,318)(220,317)(221,316)(222,315)(223,314)(224,313)
(225,321)(226,322)(227,323)(228,324)(229,325)(230,326)(231,327)(232,328)
(233,332)(234,331)(235,330)(236,329)(237,336)(238,335)(239,334)(240,333)
(241,342)(242,341)(243,344)(244,343)(245,338)(246,337)(247,340)(248,339)
(249,352)(250,351)(251,350)(252,349)(253,348)(254,347)(255,346)(256,345)
(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)(264,360)
(265,364)(266,363)(267,362)(268,361)(269,368)(270,367)(271,366)(272,365)
(273,374)(274,373)(275,376)(276,375)(277,370)(278,369)(279,372)(280,371)
(281,384)(282,383)(283,382)(284,381)(285,380)(286,379)(287,378)(288,377);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s3*s0*s2*s1*s3*s0*s2*s3*s1*s2*s3*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,103)(  6,104)(  7,101)
(  8,102)(  9,108)( 10,107)( 11,106)( 12,105)( 13,110)( 14,109)( 15,112)
( 16,111)( 17,128)( 18,127)( 19,126)( 20,125)( 21,122)( 22,121)( 23,124)
( 24,123)( 25,118)( 26,117)( 27,120)( 28,119)( 29,116)( 30,115)( 31,114)
( 32,113)( 33,161)( 34,162)( 35,163)( 36,164)( 37,167)( 38,168)( 39,165)
( 40,166)( 41,172)( 42,171)( 43,170)( 44,169)( 45,174)( 46,173)( 47,176)
( 48,175)( 49,192)( 50,191)( 51,190)( 52,189)( 53,186)( 54,185)( 55,188)
( 56,187)( 57,182)( 58,181)( 59,184)( 60,183)( 61,180)( 62,179)( 63,178)
( 64,177)( 65,129)( 66,130)( 67,131)( 68,132)( 69,135)( 70,136)( 71,133)
( 72,134)( 73,140)( 74,139)( 75,138)( 76,137)( 77,142)( 78,141)( 79,144)
( 80,143)( 81,160)( 82,159)( 83,158)( 84,157)( 85,154)( 86,153)( 87,156)
( 88,155)( 89,150)( 90,149)( 91,152)( 92,151)( 93,148)( 94,147)( 95,146)
( 96,145)(193,290)(194,289)(195,292)(196,291)(197,296)(198,295)(199,294)
(200,293)(201,299)(202,300)(203,297)(204,298)(205,301)(206,302)(207,303)
(208,304)(209,319)(210,320)(211,317)(212,318)(213,313)(214,314)(215,315)
(216,316)(217,309)(218,310)(219,311)(220,312)(221,307)(222,308)(223,305)
(224,306)(225,354)(226,353)(227,356)(228,355)(229,360)(230,359)(231,358)
(232,357)(233,363)(234,364)(235,361)(236,362)(237,365)(238,366)(239,367)
(240,368)(241,383)(242,384)(243,381)(244,382)(245,377)(246,378)(247,379)
(248,380)(249,373)(250,374)(251,375)(252,376)(253,371)(254,372)(255,369)
(256,370)(257,322)(258,321)(259,324)(260,323)(261,328)(262,327)(263,326)
(264,325)(265,331)(266,332)(267,329)(268,330)(269,333)(270,334)(271,335)
(272,336)(273,351)(274,352)(275,349)(276,350)(277,345)(278,346)(279,347)
(280,348)(281,341)(282,342)(283,343)(284,344)(285,339)(286,340)(287,337)
(288,338);
s1 := Sym(384)!(  1,354)(  2,353)(  3,358)(  4,357)(  5,356)(  6,355)(  7,360)
(  8,359)(  9,373)( 10,374)( 11,369)( 12,370)( 13,375)( 14,376)( 15,371)
( 16,372)( 17,363)( 18,364)( 19,367)( 20,368)( 21,361)( 22,362)( 23,365)
( 24,366)( 25,383)( 26,384)( 27,379)( 28,380)( 29,381)( 30,382)( 31,377)
( 32,378)( 33,322)( 34,321)( 35,326)( 36,325)( 37,324)( 38,323)( 39,328)
( 40,327)( 41,341)( 42,342)( 43,337)( 44,338)( 45,343)( 46,344)( 47,339)
( 48,340)( 49,331)( 50,332)( 51,335)( 52,336)( 53,329)( 54,330)( 55,333)
( 56,334)( 57,351)( 58,352)( 59,347)( 60,348)( 61,349)( 62,350)( 63,345)
( 64,346)( 65,290)( 66,289)( 67,294)( 68,293)( 69,292)( 70,291)( 71,296)
( 72,295)( 73,309)( 74,310)( 75,305)( 76,306)( 77,311)( 78,312)( 79,307)
( 80,308)( 81,299)( 82,300)( 83,303)( 84,304)( 85,297)( 86,298)( 87,301)
( 88,302)( 89,319)( 90,320)( 91,315)( 92,316)( 93,317)( 94,318)( 95,313)
( 96,314)( 97,258)( 98,257)( 99,262)(100,261)(101,260)(102,259)(103,264)
(104,263)(105,277)(106,278)(107,273)(108,274)(109,279)(110,280)(111,275)
(112,276)(113,267)(114,268)(115,271)(116,272)(117,265)(118,266)(119,269)
(120,270)(121,287)(122,288)(123,283)(124,284)(125,285)(126,286)(127,281)
(128,282)(129,226)(130,225)(131,230)(132,229)(133,228)(134,227)(135,232)
(136,231)(137,245)(138,246)(139,241)(140,242)(141,247)(142,248)(143,243)
(144,244)(145,235)(146,236)(147,239)(148,240)(149,233)(150,234)(151,237)
(152,238)(153,255)(154,256)(155,251)(156,252)(157,253)(158,254)(159,249)
(160,250)(161,194)(162,193)(163,198)(164,197)(165,196)(166,195)(167,200)
(168,199)(169,213)(170,214)(171,209)(172,210)(173,215)(174,216)(175,211)
(176,212)(177,203)(178,204)(179,207)(180,208)(181,201)(182,202)(183,205)
(184,206)(185,223)(186,224)(187,219)(188,220)(189,221)(190,222)(191,217)
(192,218);
s2 := Sym(384)!(  1,304)(  2,303)(  3,302)(  4,301)(  5,297)(  6,298)(  7,299)
(  8,300)(  9,293)( 10,294)( 11,295)( 12,296)( 13,292)( 14,291)( 15,290)
( 16,289)( 17,306)( 18,305)( 19,308)( 20,307)( 21,311)( 22,312)( 23,309)
( 24,310)( 25,316)( 26,315)( 27,314)( 28,313)( 29,317)( 30,318)( 31,319)
( 32,320)( 33,368)( 34,367)( 35,366)( 36,365)( 37,361)( 38,362)( 39,363)
( 40,364)( 41,357)( 42,358)( 43,359)( 44,360)( 45,356)( 46,355)( 47,354)
( 48,353)( 49,370)( 50,369)( 51,372)( 52,371)( 53,375)( 54,376)( 55,373)
( 56,374)( 57,380)( 58,379)( 59,378)( 60,377)( 61,381)( 62,382)( 63,383)
( 64,384)( 65,336)( 66,335)( 67,334)( 68,333)( 69,329)( 70,330)( 71,331)
( 72,332)( 73,325)( 74,326)( 75,327)( 76,328)( 77,324)( 78,323)( 79,322)
( 80,321)( 81,338)( 82,337)( 83,340)( 84,339)( 85,343)( 86,344)( 87,341)
( 88,342)( 89,348)( 90,347)( 91,346)( 92,345)( 93,349)( 94,350)( 95,351)
( 96,352)( 97,208)( 98,207)( 99,206)(100,205)(101,201)(102,202)(103,203)
(104,204)(105,197)(106,198)(107,199)(108,200)(109,196)(110,195)(111,194)
(112,193)(113,210)(114,209)(115,212)(116,211)(117,215)(118,216)(119,213)
(120,214)(121,220)(122,219)(123,218)(124,217)(125,221)(126,222)(127,223)
(128,224)(129,272)(130,271)(131,270)(132,269)(133,265)(134,266)(135,267)
(136,268)(137,261)(138,262)(139,263)(140,264)(141,260)(142,259)(143,258)
(144,257)(145,274)(146,273)(147,276)(148,275)(149,279)(150,280)(151,277)
(152,278)(153,284)(154,283)(155,282)(156,281)(157,285)(158,286)(159,287)
(160,288)(161,240)(162,239)(163,238)(164,237)(165,233)(166,234)(167,235)
(168,236)(169,229)(170,230)(171,231)(172,232)(173,228)(174,227)(175,226)
(176,225)(177,242)(178,241)(179,244)(180,243)(181,247)(182,248)(183,245)
(184,246)(185,252)(186,251)(187,250)(188,249)(189,253)(190,254)(191,255)
(192,256);
s3 := Sym(384)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)
(  8,104)(  9,108)( 10,107)( 11,106)( 12,105)( 13,112)( 14,111)( 15,110)
( 16,109)( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)
( 24,115)( 25,128)( 26,127)( 27,126)( 28,125)( 29,124)( 30,123)( 31,122)
( 32,121)( 33,129)( 34,130)( 35,131)( 36,132)( 37,133)( 38,134)( 39,135)
( 40,136)( 41,140)( 42,139)( 43,138)( 44,137)( 45,144)( 46,143)( 47,142)
( 48,141)( 49,150)( 50,149)( 51,152)( 52,151)( 53,146)( 54,145)( 55,148)
( 56,147)( 57,160)( 58,159)( 59,158)( 60,157)( 61,156)( 62,155)( 63,154)
( 64,153)( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)
( 72,168)( 73,172)( 74,171)( 75,170)( 76,169)( 77,176)( 78,175)( 79,174)
( 80,173)( 81,182)( 82,181)( 83,184)( 84,183)( 85,178)( 86,177)( 87,180)
( 88,179)( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)
( 96,185)(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)
(200,296)(201,300)(202,299)(203,298)(204,297)(205,304)(206,303)(207,302)
(208,301)(209,310)(210,309)(211,312)(212,311)(213,306)(214,305)(215,308)
(216,307)(217,320)(218,319)(219,318)(220,317)(221,316)(222,315)(223,314)
(224,313)(225,321)(226,322)(227,323)(228,324)(229,325)(230,326)(231,327)
(232,328)(233,332)(234,331)(235,330)(236,329)(237,336)(238,335)(239,334)
(240,333)(241,342)(242,341)(243,344)(244,343)(245,338)(246,337)(247,340)
(248,339)(249,352)(250,351)(251,350)(252,349)(253,348)(254,347)(255,346)
(256,345)(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)
(264,360)(265,364)(266,363)(267,362)(268,361)(269,368)(270,367)(271,366)
(272,365)(273,374)(274,373)(275,376)(276,375)(277,370)(278,369)(279,372)
(280,371)(281,384)(282,383)(283,382)(284,381)(285,380)(286,379)(287,378)
(288,377);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s3*s0*s2*s1*s3*s0*s2*s3*s1*s2*s3*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope