Polytope of Type {4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6}*768c
if this polytope has a name.
Group : SmallGroup(768,1088556)
Rank : 3
Schlafli Type : {4,6}
Number of vertices, edges, etc : 64, 192, 96
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6}*384a
   4-fold quotients : {4,6}*192a
   8-fold quotients : {4,6}*96
   16-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {4,3}*24, {2,6}*24
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,221)(  2,222)(  3,224)(  4,223)(  5,218)(  6,217)(  7,219)(  8,220)
(  9,213)( 10,214)( 11,216)( 12,215)( 13,210)( 14,209)( 15,211)( 16,212)
( 17,205)( 18,206)( 19,208)( 20,207)( 21,202)( 22,201)( 23,203)( 24,204)
( 25,197)( 26,198)( 27,200)( 28,199)( 29,194)( 30,193)( 31,195)( 32,196)
( 33,253)( 34,254)( 35,256)( 36,255)( 37,250)( 38,249)( 39,251)( 40,252)
( 41,245)( 42,246)( 43,248)( 44,247)( 45,242)( 46,241)( 47,243)( 48,244)
( 49,237)( 50,238)( 51,240)( 52,239)( 53,234)( 54,233)( 55,235)( 56,236)
( 57,229)( 58,230)( 59,232)( 60,231)( 61,226)( 62,225)( 63,227)( 64,228)
( 65,285)( 66,286)( 67,288)( 68,287)( 69,282)( 70,281)( 71,283)( 72,284)
( 73,277)( 74,278)( 75,280)( 76,279)( 77,274)( 78,273)( 79,275)( 80,276)
( 81,269)( 82,270)( 83,272)( 84,271)( 85,266)( 86,265)( 87,267)( 88,268)
( 89,261)( 90,262)( 91,264)( 92,263)( 93,258)( 94,257)( 95,259)( 96,260)
( 97,317)( 98,318)( 99,320)(100,319)(101,314)(102,313)(103,315)(104,316)
(105,309)(106,310)(107,312)(108,311)(109,306)(110,305)(111,307)(112,308)
(113,301)(114,302)(115,304)(116,303)(117,298)(118,297)(119,299)(120,300)
(121,293)(122,294)(123,296)(124,295)(125,290)(126,289)(127,291)(128,292)
(129,349)(130,350)(131,352)(132,351)(133,346)(134,345)(135,347)(136,348)
(137,341)(138,342)(139,344)(140,343)(141,338)(142,337)(143,339)(144,340)
(145,333)(146,334)(147,336)(148,335)(149,330)(150,329)(151,331)(152,332)
(153,325)(154,326)(155,328)(156,327)(157,322)(158,321)(159,323)(160,324)
(161,381)(162,382)(163,384)(164,383)(165,378)(166,377)(167,379)(168,380)
(169,373)(170,374)(171,376)(172,375)(173,370)(174,369)(175,371)(176,372)
(177,365)(178,366)(179,368)(180,367)(181,362)(182,361)(183,363)(184,364)
(185,357)(186,358)(187,360)(188,359)(189,354)(190,353)(191,355)(192,356);;
s1 := (  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)
( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)( 35, 67)( 36, 68)
( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)( 43, 75)( 44, 76)
( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)( 51, 91)( 52, 92)
( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)( 59, 83)( 60, 84)
( 61, 87)( 62, 88)( 63, 85)( 64, 86)(101,103)(102,104)(109,111)(110,112)
(113,121)(114,122)(115,123)(116,124)(117,127)(118,128)(119,125)(120,126)
(129,161)(130,162)(131,163)(132,164)(133,167)(134,168)(135,165)(136,166)
(137,169)(138,170)(139,171)(140,172)(141,175)(142,176)(143,173)(144,174)
(145,185)(146,186)(147,187)(148,188)(149,191)(150,192)(151,189)(152,190)
(153,177)(154,178)(155,179)(156,180)(157,183)(158,184)(159,181)(160,182)
(193,194)(195,196)(197,200)(198,199)(201,202)(203,204)(205,208)(206,207)
(209,218)(210,217)(211,220)(212,219)(213,224)(214,223)(215,222)(216,221)
(225,258)(226,257)(227,260)(228,259)(229,264)(230,263)(231,262)(232,261)
(233,266)(234,265)(235,268)(236,267)(237,272)(238,271)(239,270)(240,269)
(241,282)(242,281)(243,284)(244,283)(245,288)(246,287)(247,286)(248,285)
(249,274)(250,273)(251,276)(252,275)(253,280)(254,279)(255,278)(256,277)
(289,290)(291,292)(293,296)(294,295)(297,298)(299,300)(301,304)(302,303)
(305,314)(306,313)(307,316)(308,315)(309,320)(310,319)(311,318)(312,317)
(321,354)(322,353)(323,356)(324,355)(325,360)(326,359)(327,358)(328,357)
(329,362)(330,361)(331,364)(332,363)(333,368)(334,367)(335,366)(336,365)
(337,378)(338,377)(339,380)(340,379)(341,384)(342,383)(343,382)(344,381)
(345,370)(346,369)(347,372)(348,371)(349,376)(350,375)(351,374)(352,373);;
s2 := (  1,161)(  2,162)(  3,165)(  4,166)(  5,163)(  6,164)(  7,167)(  8,168)
(  9,182)( 10,181)( 11,178)( 12,177)( 13,184)( 14,183)( 15,180)( 16,179)
( 17,172)( 18,171)( 19,176)( 20,175)( 21,170)( 22,169)( 23,174)( 24,173)
( 25,192)( 26,191)( 27,188)( 28,187)( 29,190)( 30,189)( 31,186)( 32,185)
( 33,129)( 34,130)( 35,133)( 36,134)( 37,131)( 38,132)( 39,135)( 40,136)
( 41,150)( 42,149)( 43,146)( 44,145)( 45,152)( 46,151)( 47,148)( 48,147)
( 49,140)( 50,139)( 51,144)( 52,143)( 53,138)( 54,137)( 55,142)( 56,141)
( 57,160)( 58,159)( 59,156)( 60,155)( 61,158)( 62,157)( 63,154)( 64,153)
( 65, 97)( 66, 98)( 67,101)( 68,102)( 69, 99)( 70,100)( 71,103)( 72,104)
( 73,118)( 74,117)( 75,114)( 76,113)( 77,120)( 78,119)( 79,116)( 80,115)
( 81,108)( 82,107)( 83,112)( 84,111)( 85,106)( 86,105)( 87,110)( 88,109)
( 89,128)( 90,127)( 91,124)( 92,123)( 93,126)( 94,125)( 95,122)( 96,121)
(193,354)(194,353)(195,358)(196,357)(197,356)(198,355)(199,360)(200,359)
(201,373)(202,374)(203,369)(204,370)(205,375)(206,376)(207,371)(208,372)
(209,363)(210,364)(211,367)(212,368)(213,361)(214,362)(215,365)(216,366)
(217,383)(218,384)(219,379)(220,380)(221,381)(222,382)(223,377)(224,378)
(225,322)(226,321)(227,326)(228,325)(229,324)(230,323)(231,328)(232,327)
(233,341)(234,342)(235,337)(236,338)(237,343)(238,344)(239,339)(240,340)
(241,331)(242,332)(243,335)(244,336)(245,329)(246,330)(247,333)(248,334)
(249,351)(250,352)(251,347)(252,348)(253,349)(254,350)(255,345)(256,346)
(257,290)(258,289)(259,294)(260,293)(261,292)(262,291)(263,296)(264,295)
(265,309)(266,310)(267,305)(268,306)(269,311)(270,312)(271,307)(272,308)
(273,299)(274,300)(275,303)(276,304)(277,297)(278,298)(279,301)(280,302)
(281,319)(282,320)(283,315)(284,316)(285,317)(286,318)(287,313)(288,314);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1,221)(  2,222)(  3,224)(  4,223)(  5,218)(  6,217)(  7,219)
(  8,220)(  9,213)( 10,214)( 11,216)( 12,215)( 13,210)( 14,209)( 15,211)
( 16,212)( 17,205)( 18,206)( 19,208)( 20,207)( 21,202)( 22,201)( 23,203)
( 24,204)( 25,197)( 26,198)( 27,200)( 28,199)( 29,194)( 30,193)( 31,195)
( 32,196)( 33,253)( 34,254)( 35,256)( 36,255)( 37,250)( 38,249)( 39,251)
( 40,252)( 41,245)( 42,246)( 43,248)( 44,247)( 45,242)( 46,241)( 47,243)
( 48,244)( 49,237)( 50,238)( 51,240)( 52,239)( 53,234)( 54,233)( 55,235)
( 56,236)( 57,229)( 58,230)( 59,232)( 60,231)( 61,226)( 62,225)( 63,227)
( 64,228)( 65,285)( 66,286)( 67,288)( 68,287)( 69,282)( 70,281)( 71,283)
( 72,284)( 73,277)( 74,278)( 75,280)( 76,279)( 77,274)( 78,273)( 79,275)
( 80,276)( 81,269)( 82,270)( 83,272)( 84,271)( 85,266)( 86,265)( 87,267)
( 88,268)( 89,261)( 90,262)( 91,264)( 92,263)( 93,258)( 94,257)( 95,259)
( 96,260)( 97,317)( 98,318)( 99,320)(100,319)(101,314)(102,313)(103,315)
(104,316)(105,309)(106,310)(107,312)(108,311)(109,306)(110,305)(111,307)
(112,308)(113,301)(114,302)(115,304)(116,303)(117,298)(118,297)(119,299)
(120,300)(121,293)(122,294)(123,296)(124,295)(125,290)(126,289)(127,291)
(128,292)(129,349)(130,350)(131,352)(132,351)(133,346)(134,345)(135,347)
(136,348)(137,341)(138,342)(139,344)(140,343)(141,338)(142,337)(143,339)
(144,340)(145,333)(146,334)(147,336)(148,335)(149,330)(150,329)(151,331)
(152,332)(153,325)(154,326)(155,328)(156,327)(157,322)(158,321)(159,323)
(160,324)(161,381)(162,382)(163,384)(164,383)(165,378)(166,377)(167,379)
(168,380)(169,373)(170,374)(171,376)(172,375)(173,370)(174,369)(175,371)
(176,372)(177,365)(178,366)(179,368)(180,367)(181,362)(182,361)(183,363)
(184,364)(185,357)(186,358)(187,360)(188,359)(189,354)(190,353)(191,355)
(192,356);
s1 := Sym(384)!(  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)
( 20, 28)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)( 35, 67)
( 36, 68)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)( 43, 75)
( 44, 76)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)( 51, 91)
( 52, 92)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)( 59, 83)
( 60, 84)( 61, 87)( 62, 88)( 63, 85)( 64, 86)(101,103)(102,104)(109,111)
(110,112)(113,121)(114,122)(115,123)(116,124)(117,127)(118,128)(119,125)
(120,126)(129,161)(130,162)(131,163)(132,164)(133,167)(134,168)(135,165)
(136,166)(137,169)(138,170)(139,171)(140,172)(141,175)(142,176)(143,173)
(144,174)(145,185)(146,186)(147,187)(148,188)(149,191)(150,192)(151,189)
(152,190)(153,177)(154,178)(155,179)(156,180)(157,183)(158,184)(159,181)
(160,182)(193,194)(195,196)(197,200)(198,199)(201,202)(203,204)(205,208)
(206,207)(209,218)(210,217)(211,220)(212,219)(213,224)(214,223)(215,222)
(216,221)(225,258)(226,257)(227,260)(228,259)(229,264)(230,263)(231,262)
(232,261)(233,266)(234,265)(235,268)(236,267)(237,272)(238,271)(239,270)
(240,269)(241,282)(242,281)(243,284)(244,283)(245,288)(246,287)(247,286)
(248,285)(249,274)(250,273)(251,276)(252,275)(253,280)(254,279)(255,278)
(256,277)(289,290)(291,292)(293,296)(294,295)(297,298)(299,300)(301,304)
(302,303)(305,314)(306,313)(307,316)(308,315)(309,320)(310,319)(311,318)
(312,317)(321,354)(322,353)(323,356)(324,355)(325,360)(326,359)(327,358)
(328,357)(329,362)(330,361)(331,364)(332,363)(333,368)(334,367)(335,366)
(336,365)(337,378)(338,377)(339,380)(340,379)(341,384)(342,383)(343,382)
(344,381)(345,370)(346,369)(347,372)(348,371)(349,376)(350,375)(351,374)
(352,373);
s2 := Sym(384)!(  1,161)(  2,162)(  3,165)(  4,166)(  5,163)(  6,164)(  7,167)
(  8,168)(  9,182)( 10,181)( 11,178)( 12,177)( 13,184)( 14,183)( 15,180)
( 16,179)( 17,172)( 18,171)( 19,176)( 20,175)( 21,170)( 22,169)( 23,174)
( 24,173)( 25,192)( 26,191)( 27,188)( 28,187)( 29,190)( 30,189)( 31,186)
( 32,185)( 33,129)( 34,130)( 35,133)( 36,134)( 37,131)( 38,132)( 39,135)
( 40,136)( 41,150)( 42,149)( 43,146)( 44,145)( 45,152)( 46,151)( 47,148)
( 48,147)( 49,140)( 50,139)( 51,144)( 52,143)( 53,138)( 54,137)( 55,142)
( 56,141)( 57,160)( 58,159)( 59,156)( 60,155)( 61,158)( 62,157)( 63,154)
( 64,153)( 65, 97)( 66, 98)( 67,101)( 68,102)( 69, 99)( 70,100)( 71,103)
( 72,104)( 73,118)( 74,117)( 75,114)( 76,113)( 77,120)( 78,119)( 79,116)
( 80,115)( 81,108)( 82,107)( 83,112)( 84,111)( 85,106)( 86,105)( 87,110)
( 88,109)( 89,128)( 90,127)( 91,124)( 92,123)( 93,126)( 94,125)( 95,122)
( 96,121)(193,354)(194,353)(195,358)(196,357)(197,356)(198,355)(199,360)
(200,359)(201,373)(202,374)(203,369)(204,370)(205,375)(206,376)(207,371)
(208,372)(209,363)(210,364)(211,367)(212,368)(213,361)(214,362)(215,365)
(216,366)(217,383)(218,384)(219,379)(220,380)(221,381)(222,382)(223,377)
(224,378)(225,322)(226,321)(227,326)(228,325)(229,324)(230,323)(231,328)
(232,327)(233,341)(234,342)(235,337)(236,338)(237,343)(238,344)(239,339)
(240,340)(241,331)(242,332)(243,335)(244,336)(245,329)(246,330)(247,333)
(248,334)(249,351)(250,352)(251,347)(252,348)(253,349)(254,350)(255,345)
(256,346)(257,290)(258,289)(259,294)(260,293)(261,292)(262,291)(263,296)
(264,295)(265,309)(266,310)(267,305)(268,306)(269,311)(270,312)(271,307)
(272,308)(273,299)(274,300)(275,303)(276,304)(277,297)(278,298)(279,301)
(280,302)(281,319)(282,320)(283,315)(284,316)(285,317)(286,318)(287,313)
(288,314);
poly := sub<Sym(384)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0 >; 
 
References : None.
to this polytope