include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12}*768j
if this polytope has a name.
Group : SmallGroup(768,1088556)
Rank : 3
Schlafli Type : {6,12}
Number of vertices, edges, etc : 32, 192, 64
Order of s0s1s2 : 4
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6}*384c
4-fold quotients : {6,6}*192a
8-fold quotients : {6,6}*96
16-fold quotients : {3,6}*48, {6,3}*48
32-fold quotients : {3,3}*24
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 97)( 2, 98)( 3, 99)( 4,100)( 5,103)( 6,104)( 7,101)( 8,102)
( 9,108)( 10,107)( 11,106)( 12,105)( 13,110)( 14,109)( 15,112)( 16,111)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,122)( 22,121)( 23,124)( 24,123)
( 25,118)( 26,117)( 27,120)( 28,119)( 29,116)( 30,115)( 31,114)( 32,113)
( 33,161)( 34,162)( 35,163)( 36,164)( 37,167)( 38,168)( 39,165)( 40,166)
( 41,172)( 42,171)( 43,170)( 44,169)( 45,174)( 46,173)( 47,176)( 48,175)
( 49,192)( 50,191)( 51,190)( 52,189)( 53,186)( 54,185)( 55,188)( 56,187)
( 57,182)( 58,181)( 59,184)( 60,183)( 61,180)( 62,179)( 63,178)( 64,177)
( 65,129)( 66,130)( 67,131)( 68,132)( 69,135)( 70,136)( 71,133)( 72,134)
( 73,140)( 74,139)( 75,138)( 76,137)( 77,142)( 78,141)( 79,144)( 80,143)
( 81,160)( 82,159)( 83,158)( 84,157)( 85,154)( 86,153)( 87,156)( 88,155)
( 89,150)( 90,149)( 91,152)( 92,151)( 93,148)( 94,147)( 95,146)( 96,145)
(193,290)(194,289)(195,292)(196,291)(197,296)(198,295)(199,294)(200,293)
(201,299)(202,300)(203,297)(204,298)(205,301)(206,302)(207,303)(208,304)
(209,319)(210,320)(211,317)(212,318)(213,313)(214,314)(215,315)(216,316)
(217,309)(218,310)(219,311)(220,312)(221,307)(222,308)(223,305)(224,306)
(225,354)(226,353)(227,356)(228,355)(229,360)(230,359)(231,358)(232,357)
(233,363)(234,364)(235,361)(236,362)(237,365)(238,366)(239,367)(240,368)
(241,383)(242,384)(243,381)(244,382)(245,377)(246,378)(247,379)(248,380)
(249,373)(250,374)(251,375)(252,376)(253,371)(254,372)(255,369)(256,370)
(257,322)(258,321)(259,324)(260,323)(261,328)(262,327)(263,326)(264,325)
(265,331)(266,332)(267,329)(268,330)(269,333)(270,334)(271,335)(272,336)
(273,351)(274,352)(275,349)(276,350)(277,345)(278,346)(279,347)(280,348)
(281,341)(282,342)(283,343)(284,344)(285,339)(286,340)(287,337)(288,338);;
s1 := ( 1, 65)( 2, 66)( 3, 69)( 4, 70)( 5, 67)( 6, 68)( 7, 71)( 8, 72)
( 9, 81)( 10, 82)( 11, 85)( 12, 86)( 13, 83)( 14, 84)( 15, 87)( 16, 88)
( 17, 73)( 18, 74)( 19, 77)( 20, 78)( 21, 75)( 22, 76)( 23, 79)( 24, 80)
( 25, 89)( 26, 90)( 27, 93)( 28, 94)( 29, 91)( 30, 92)( 31, 95)( 32, 96)
( 35, 37)( 36, 38)( 41, 49)( 42, 50)( 43, 53)( 44, 54)( 45, 51)( 46, 52)
( 47, 55)( 48, 56)( 59, 61)( 60, 62)( 97,161)( 98,162)( 99,165)(100,166)
(101,163)(102,164)(103,167)(104,168)(105,177)(106,178)(107,181)(108,182)
(109,179)(110,180)(111,183)(112,184)(113,169)(114,170)(115,173)(116,174)
(117,171)(118,172)(119,175)(120,176)(121,185)(122,186)(123,189)(124,190)
(125,187)(126,188)(127,191)(128,192)(131,133)(132,134)(137,145)(138,146)
(139,149)(140,150)(141,147)(142,148)(143,151)(144,152)(155,157)(156,158)
(193,258)(194,257)(195,262)(196,261)(197,260)(198,259)(199,264)(200,263)
(201,274)(202,273)(203,278)(204,277)(205,276)(206,275)(207,280)(208,279)
(209,266)(210,265)(211,270)(212,269)(213,268)(214,267)(215,272)(216,271)
(217,282)(218,281)(219,286)(220,285)(221,284)(222,283)(223,288)(224,287)
(225,226)(227,230)(228,229)(231,232)(233,242)(234,241)(235,246)(236,245)
(237,244)(238,243)(239,248)(240,247)(249,250)(251,254)(252,253)(255,256)
(289,354)(290,353)(291,358)(292,357)(293,356)(294,355)(295,360)(296,359)
(297,370)(298,369)(299,374)(300,373)(301,372)(302,371)(303,376)(304,375)
(305,362)(306,361)(307,366)(308,365)(309,364)(310,363)(311,368)(312,367)
(313,378)(314,377)(315,382)(316,381)(317,380)(318,379)(319,384)(320,383)
(321,322)(323,326)(324,325)(327,328)(329,338)(330,337)(331,342)(332,341)
(333,340)(334,339)(335,344)(336,343)(345,346)(347,350)(348,349)(351,352);;
s2 := ( 1,304)( 2,303)( 3,302)( 4,301)( 5,297)( 6,298)( 7,299)( 8,300)
( 9,293)( 10,294)( 11,295)( 12,296)( 13,292)( 14,291)( 15,290)( 16,289)
( 17,306)( 18,305)( 19,308)( 20,307)( 21,311)( 22,312)( 23,309)( 24,310)
( 25,316)( 26,315)( 27,314)( 28,313)( 29,317)( 30,318)( 31,319)( 32,320)
( 33,368)( 34,367)( 35,366)( 36,365)( 37,361)( 38,362)( 39,363)( 40,364)
( 41,357)( 42,358)( 43,359)( 44,360)( 45,356)( 46,355)( 47,354)( 48,353)
( 49,370)( 50,369)( 51,372)( 52,371)( 53,375)( 54,376)( 55,373)( 56,374)
( 57,380)( 58,379)( 59,378)( 60,377)( 61,381)( 62,382)( 63,383)( 64,384)
( 65,336)( 66,335)( 67,334)( 68,333)( 69,329)( 70,330)( 71,331)( 72,332)
( 73,325)( 74,326)( 75,327)( 76,328)( 77,324)( 78,323)( 79,322)( 80,321)
( 81,338)( 82,337)( 83,340)( 84,339)( 85,343)( 86,344)( 87,341)( 88,342)
( 89,348)( 90,347)( 91,346)( 92,345)( 93,349)( 94,350)( 95,351)( 96,352)
( 97,208)( 98,207)( 99,206)(100,205)(101,201)(102,202)(103,203)(104,204)
(105,197)(106,198)(107,199)(108,200)(109,196)(110,195)(111,194)(112,193)
(113,210)(114,209)(115,212)(116,211)(117,215)(118,216)(119,213)(120,214)
(121,220)(122,219)(123,218)(124,217)(125,221)(126,222)(127,223)(128,224)
(129,272)(130,271)(131,270)(132,269)(133,265)(134,266)(135,267)(136,268)
(137,261)(138,262)(139,263)(140,264)(141,260)(142,259)(143,258)(144,257)
(145,274)(146,273)(147,276)(148,275)(149,279)(150,280)(151,277)(152,278)
(153,284)(154,283)(155,282)(156,281)(157,285)(158,286)(159,287)(160,288)
(161,240)(162,239)(163,238)(164,237)(165,233)(166,234)(167,235)(168,236)
(169,229)(170,230)(171,231)(172,232)(173,228)(174,227)(175,226)(176,225)
(177,242)(178,241)(179,244)(180,243)(181,247)(182,248)(183,245)(184,246)
(185,252)(186,251)(187,250)(188,249)(189,253)(190,254)(191,255)(192,256);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(384)!( 1, 97)( 2, 98)( 3, 99)( 4,100)( 5,103)( 6,104)( 7,101)
( 8,102)( 9,108)( 10,107)( 11,106)( 12,105)( 13,110)( 14,109)( 15,112)
( 16,111)( 17,128)( 18,127)( 19,126)( 20,125)( 21,122)( 22,121)( 23,124)
( 24,123)( 25,118)( 26,117)( 27,120)( 28,119)( 29,116)( 30,115)( 31,114)
( 32,113)( 33,161)( 34,162)( 35,163)( 36,164)( 37,167)( 38,168)( 39,165)
( 40,166)( 41,172)( 42,171)( 43,170)( 44,169)( 45,174)( 46,173)( 47,176)
( 48,175)( 49,192)( 50,191)( 51,190)( 52,189)( 53,186)( 54,185)( 55,188)
( 56,187)( 57,182)( 58,181)( 59,184)( 60,183)( 61,180)( 62,179)( 63,178)
( 64,177)( 65,129)( 66,130)( 67,131)( 68,132)( 69,135)( 70,136)( 71,133)
( 72,134)( 73,140)( 74,139)( 75,138)( 76,137)( 77,142)( 78,141)( 79,144)
( 80,143)( 81,160)( 82,159)( 83,158)( 84,157)( 85,154)( 86,153)( 87,156)
( 88,155)( 89,150)( 90,149)( 91,152)( 92,151)( 93,148)( 94,147)( 95,146)
( 96,145)(193,290)(194,289)(195,292)(196,291)(197,296)(198,295)(199,294)
(200,293)(201,299)(202,300)(203,297)(204,298)(205,301)(206,302)(207,303)
(208,304)(209,319)(210,320)(211,317)(212,318)(213,313)(214,314)(215,315)
(216,316)(217,309)(218,310)(219,311)(220,312)(221,307)(222,308)(223,305)
(224,306)(225,354)(226,353)(227,356)(228,355)(229,360)(230,359)(231,358)
(232,357)(233,363)(234,364)(235,361)(236,362)(237,365)(238,366)(239,367)
(240,368)(241,383)(242,384)(243,381)(244,382)(245,377)(246,378)(247,379)
(248,380)(249,373)(250,374)(251,375)(252,376)(253,371)(254,372)(255,369)
(256,370)(257,322)(258,321)(259,324)(260,323)(261,328)(262,327)(263,326)
(264,325)(265,331)(266,332)(267,329)(268,330)(269,333)(270,334)(271,335)
(272,336)(273,351)(274,352)(275,349)(276,350)(277,345)(278,346)(279,347)
(280,348)(281,341)(282,342)(283,343)(284,344)(285,339)(286,340)(287,337)
(288,338);
s1 := Sym(384)!( 1, 65)( 2, 66)( 3, 69)( 4, 70)( 5, 67)( 6, 68)( 7, 71)
( 8, 72)( 9, 81)( 10, 82)( 11, 85)( 12, 86)( 13, 83)( 14, 84)( 15, 87)
( 16, 88)( 17, 73)( 18, 74)( 19, 77)( 20, 78)( 21, 75)( 22, 76)( 23, 79)
( 24, 80)( 25, 89)( 26, 90)( 27, 93)( 28, 94)( 29, 91)( 30, 92)( 31, 95)
( 32, 96)( 35, 37)( 36, 38)( 41, 49)( 42, 50)( 43, 53)( 44, 54)( 45, 51)
( 46, 52)( 47, 55)( 48, 56)( 59, 61)( 60, 62)( 97,161)( 98,162)( 99,165)
(100,166)(101,163)(102,164)(103,167)(104,168)(105,177)(106,178)(107,181)
(108,182)(109,179)(110,180)(111,183)(112,184)(113,169)(114,170)(115,173)
(116,174)(117,171)(118,172)(119,175)(120,176)(121,185)(122,186)(123,189)
(124,190)(125,187)(126,188)(127,191)(128,192)(131,133)(132,134)(137,145)
(138,146)(139,149)(140,150)(141,147)(142,148)(143,151)(144,152)(155,157)
(156,158)(193,258)(194,257)(195,262)(196,261)(197,260)(198,259)(199,264)
(200,263)(201,274)(202,273)(203,278)(204,277)(205,276)(206,275)(207,280)
(208,279)(209,266)(210,265)(211,270)(212,269)(213,268)(214,267)(215,272)
(216,271)(217,282)(218,281)(219,286)(220,285)(221,284)(222,283)(223,288)
(224,287)(225,226)(227,230)(228,229)(231,232)(233,242)(234,241)(235,246)
(236,245)(237,244)(238,243)(239,248)(240,247)(249,250)(251,254)(252,253)
(255,256)(289,354)(290,353)(291,358)(292,357)(293,356)(294,355)(295,360)
(296,359)(297,370)(298,369)(299,374)(300,373)(301,372)(302,371)(303,376)
(304,375)(305,362)(306,361)(307,366)(308,365)(309,364)(310,363)(311,368)
(312,367)(313,378)(314,377)(315,382)(316,381)(317,380)(318,379)(319,384)
(320,383)(321,322)(323,326)(324,325)(327,328)(329,338)(330,337)(331,342)
(332,341)(333,340)(334,339)(335,344)(336,343)(345,346)(347,350)(348,349)
(351,352);
s2 := Sym(384)!( 1,304)( 2,303)( 3,302)( 4,301)( 5,297)( 6,298)( 7,299)
( 8,300)( 9,293)( 10,294)( 11,295)( 12,296)( 13,292)( 14,291)( 15,290)
( 16,289)( 17,306)( 18,305)( 19,308)( 20,307)( 21,311)( 22,312)( 23,309)
( 24,310)( 25,316)( 26,315)( 27,314)( 28,313)( 29,317)( 30,318)( 31,319)
( 32,320)( 33,368)( 34,367)( 35,366)( 36,365)( 37,361)( 38,362)( 39,363)
( 40,364)( 41,357)( 42,358)( 43,359)( 44,360)( 45,356)( 46,355)( 47,354)
( 48,353)( 49,370)( 50,369)( 51,372)( 52,371)( 53,375)( 54,376)( 55,373)
( 56,374)( 57,380)( 58,379)( 59,378)( 60,377)( 61,381)( 62,382)( 63,383)
( 64,384)( 65,336)( 66,335)( 67,334)( 68,333)( 69,329)( 70,330)( 71,331)
( 72,332)( 73,325)( 74,326)( 75,327)( 76,328)( 77,324)( 78,323)( 79,322)
( 80,321)( 81,338)( 82,337)( 83,340)( 84,339)( 85,343)( 86,344)( 87,341)
( 88,342)( 89,348)( 90,347)( 91,346)( 92,345)( 93,349)( 94,350)( 95,351)
( 96,352)( 97,208)( 98,207)( 99,206)(100,205)(101,201)(102,202)(103,203)
(104,204)(105,197)(106,198)(107,199)(108,200)(109,196)(110,195)(111,194)
(112,193)(113,210)(114,209)(115,212)(116,211)(117,215)(118,216)(119,213)
(120,214)(121,220)(122,219)(123,218)(124,217)(125,221)(126,222)(127,223)
(128,224)(129,272)(130,271)(131,270)(132,269)(133,265)(134,266)(135,267)
(136,268)(137,261)(138,262)(139,263)(140,264)(141,260)(142,259)(143,258)
(144,257)(145,274)(146,273)(147,276)(148,275)(149,279)(150,280)(151,277)
(152,278)(153,284)(154,283)(155,282)(156,281)(157,285)(158,286)(159,287)
(160,288)(161,240)(162,239)(163,238)(164,237)(165,233)(166,234)(167,235)
(168,236)(169,229)(170,230)(171,231)(172,232)(173,228)(174,227)(175,226)
(176,225)(177,242)(178,241)(179,244)(180,243)(181,247)(182,248)(183,245)
(184,246)(185,252)(186,251)(187,250)(188,249)(189,253)(190,254)(191,255)
(192,256);
poly := sub<Sym(384)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope