include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,4}*768a
if this polytope has a name.
Group : SmallGroup(768,1088763)
Rank : 4
Schlafli Type : {6,12,4}
Number of vertices, edges, etc : 8, 48, 32, 4
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,4}*384, {6,12,2}*384a
4-fold quotients : {3,6,4}*192, {6,6,2}*192
8-fold quotients : {3,6,2}*96, {6,3,2}*96
12-fold quotients : {2,4,4}*64
16-fold quotients : {3,3,2}*48
24-fold quotients : {2,2,4}*32, {2,4,2}*32
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(15,16)(17,21)(18,22)(19,24)(20,23)
(27,28)(29,33)(30,34)(31,36)(32,35)(39,40)(41,45)(42,46)(43,48)(44,47)(51,52)
(53,57)(54,58)(55,60)(56,59)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)(77,81)
(78,82)(79,84)(80,83)(87,88)(89,93)(90,94)(91,96)(92,95);;
s1 := ( 1, 9)( 2,11)( 3,10)( 4,12)( 6, 7)(13,21)(14,23)(15,22)(16,24)(18,19)
(25,33)(26,35)(27,34)(28,36)(30,31)(37,45)(38,47)(39,46)(40,48)(42,43)(49,69)
(50,71)(51,70)(52,72)(53,65)(54,67)(55,66)(56,68)(57,61)(58,63)(59,62)(60,64)
(73,93)(74,95)(75,94)(76,96)(77,89)(78,91)(79,90)(80,92)(81,85)(82,87)(83,86)
(84,88);;
s2 := ( 1,50)( 2,49)( 3,51)( 4,52)( 5,58)( 6,57)( 7,59)( 8,60)( 9,54)(10,53)
(11,55)(12,56)(13,62)(14,61)(15,63)(16,64)(17,70)(18,69)(19,71)(20,72)(21,66)
(22,65)(23,67)(24,68)(25,74)(26,73)(27,75)(28,76)(29,82)(30,81)(31,83)(32,84)
(33,78)(34,77)(35,79)(36,80)(37,86)(38,85)(39,87)(40,88)(41,94)(42,93)(43,95)
(44,96)(45,90)(46,89)(47,91)(48,92);;
s3 := (49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)
(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)
(70,94)(71,95)(72,96);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(96)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(15,16)(17,21)(18,22)(19,24)
(20,23)(27,28)(29,33)(30,34)(31,36)(32,35)(39,40)(41,45)(42,46)(43,48)(44,47)
(51,52)(53,57)(54,58)(55,60)(56,59)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)
(77,81)(78,82)(79,84)(80,83)(87,88)(89,93)(90,94)(91,96)(92,95);
s1 := Sym(96)!( 1, 9)( 2,11)( 3,10)( 4,12)( 6, 7)(13,21)(14,23)(15,22)(16,24)
(18,19)(25,33)(26,35)(27,34)(28,36)(30,31)(37,45)(38,47)(39,46)(40,48)(42,43)
(49,69)(50,71)(51,70)(52,72)(53,65)(54,67)(55,66)(56,68)(57,61)(58,63)(59,62)
(60,64)(73,93)(74,95)(75,94)(76,96)(77,89)(78,91)(79,90)(80,92)(81,85)(82,87)
(83,86)(84,88);
s2 := Sym(96)!( 1,50)( 2,49)( 3,51)( 4,52)( 5,58)( 6,57)( 7,59)( 8,60)( 9,54)
(10,53)(11,55)(12,56)(13,62)(14,61)(15,63)(16,64)(17,70)(18,69)(19,71)(20,72)
(21,66)(22,65)(23,67)(24,68)(25,74)(26,73)(27,75)(28,76)(29,82)(30,81)(31,83)
(32,84)(33,78)(34,77)(35,79)(36,80)(37,86)(38,85)(39,87)(40,88)(41,94)(42,93)
(43,95)(44,96)(45,90)(46,89)(47,91)(48,92);
s3 := Sym(96)!(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)
(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)
(69,93)(70,94)(71,95)(72,96);
poly := sub<Sym(96)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1 >;
References : None.
to this polytope