Polytope of Type {2,3,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,12,4}*768
if this polytope has a name.
Group : SmallGroup(768,1089251)
Rank : 5
Schlafli Type : {2,3,12,4}
Number of vertices, edges, etc : 2, 4, 24, 32, 4
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6,4}*384, {2,3,12,2}*384
   4-fold quotients : {2,3,6,2}*192
   8-fold quotients : {2,3,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 8)( 6, 7)( 9,10)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)(17,26)
(18,25)(29,32)(30,31)(33,34)(35,43)(36,44)(37,48)(38,47)(39,46)(40,45)(41,50)
(42,49)(51,52)(53,55)(54,56)(59,68)(60,67)(61,71)(62,72)(63,69)(64,70)(65,73)
(66,74)(75,76)(77,79)(78,80)(83,92)(84,91)(85,95)(86,96)(87,93)(88,94)(89,97)
(90,98);;
s2 := ( 3,11)( 4,12)( 5,14)( 6,13)( 7,17)( 8,18)( 9,15)(10,16)(21,22)(23,25)
(24,26)(27,35)(28,36)(29,38)(30,37)(31,41)(32,42)(33,39)(34,40)(45,46)(47,49)
(48,50)(51,60)(52,59)(53,61)(54,62)(55,66)(56,65)(57,64)(58,63)(67,68)(71,74)
(72,73)(75,84)(76,83)(77,85)(78,86)(79,90)(80,89)(81,88)(82,87)(91,92)(95,98)
(96,97);;
s3 := ( 3,57)( 4,58)( 5,53)( 6,54)( 7,56)( 8,55)( 9,51)(10,52)(11,73)(12,74)
(13,69)(14,70)(15,72)(16,71)(17,67)(18,68)(19,65)(20,66)(21,61)(22,62)(23,64)
(24,63)(25,59)(26,60)(27,81)(28,82)(29,77)(30,78)(31,80)(32,79)(33,75)(34,76)
(35,97)(36,98)(37,93)(38,94)(39,96)(40,95)(41,91)(42,92)(43,89)(44,90)(45,85)
(46,86)(47,88)(48,87)(49,83)(50,84);;
s4 := (51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)
(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)
(72,96)(73,97)(74,98);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 5, 8)( 6, 7)( 9,10)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)
(17,26)(18,25)(29,32)(30,31)(33,34)(35,43)(36,44)(37,48)(38,47)(39,46)(40,45)
(41,50)(42,49)(51,52)(53,55)(54,56)(59,68)(60,67)(61,71)(62,72)(63,69)(64,70)
(65,73)(66,74)(75,76)(77,79)(78,80)(83,92)(84,91)(85,95)(86,96)(87,93)(88,94)
(89,97)(90,98);
s2 := Sym(98)!( 3,11)( 4,12)( 5,14)( 6,13)( 7,17)( 8,18)( 9,15)(10,16)(21,22)
(23,25)(24,26)(27,35)(28,36)(29,38)(30,37)(31,41)(32,42)(33,39)(34,40)(45,46)
(47,49)(48,50)(51,60)(52,59)(53,61)(54,62)(55,66)(56,65)(57,64)(58,63)(67,68)
(71,74)(72,73)(75,84)(76,83)(77,85)(78,86)(79,90)(80,89)(81,88)(82,87)(91,92)
(95,98)(96,97);
s3 := Sym(98)!( 3,57)( 4,58)( 5,53)( 6,54)( 7,56)( 8,55)( 9,51)(10,52)(11,73)
(12,74)(13,69)(14,70)(15,72)(16,71)(17,67)(18,68)(19,65)(20,66)(21,61)(22,62)
(23,64)(24,63)(25,59)(26,60)(27,81)(28,82)(29,77)(30,78)(31,80)(32,79)(33,75)
(34,76)(35,97)(36,98)(37,93)(38,94)(39,96)(40,95)(41,91)(42,92)(43,89)(44,90)
(45,85)(46,86)(47,88)(48,87)(49,83)(50,84);
s4 := Sym(98)!(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)
(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)
(71,95)(72,96)(73,97)(74,98);
poly := sub<Sym(98)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2 >; 
 

to this polytope