include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12,2}*768h
if this polytope has a name.
Group : SmallGroup(768,1089263)
Rank : 4
Schlafli Type : {8,12,2}
Number of vertices, edges, etc : 16, 96, 24, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,12,2}*384c, {8,6,2}*384b
4-fold quotients : {8,3,2}*192, {4,6,2}*192
8-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
16-fold quotients : {4,3,2}*48, {2,6,2}*48
32-fold quotients : {2,3,2}*24
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 53)( 2, 54)( 3, 56)( 4, 55)( 5, 50)( 6, 49)( 7, 51)( 8, 52)
( 9, 61)( 10, 62)( 11, 64)( 12, 63)( 13, 58)( 14, 57)( 15, 59)( 16, 60)
( 17, 69)( 18, 70)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 67)( 24, 68)
( 25, 77)( 26, 78)( 27, 80)( 28, 79)( 29, 74)( 30, 73)( 31, 75)( 32, 76)
( 33, 85)( 34, 86)( 35, 88)( 36, 87)( 37, 82)( 38, 81)( 39, 83)( 40, 84)
( 41, 93)( 42, 94)( 43, 96)( 44, 95)( 45, 90)( 46, 89)( 47, 91)( 48, 92)
( 97,149)( 98,150)( 99,152)(100,151)(101,146)(102,145)(103,147)(104,148)
(105,157)(106,158)(107,160)(108,159)(109,154)(110,153)(111,155)(112,156)
(113,165)(114,166)(115,168)(116,167)(117,162)(118,161)(119,163)(120,164)
(121,173)(122,174)(123,176)(124,175)(125,170)(126,169)(127,171)(128,172)
(129,181)(130,182)(131,184)(132,183)(133,178)(134,177)(135,179)(136,180)
(137,189)(138,190)(139,192)(140,191)(141,186)(142,185)(143,187)(144,188);;
s1 := ( 1,145)( 2,146)( 3,150)( 4,149)( 5,148)( 6,147)( 7,152)( 8,151)
( 9,161)( 10,162)( 11,166)( 12,165)( 13,164)( 14,163)( 15,168)( 16,167)
( 17,153)( 18,154)( 19,158)( 20,157)( 21,156)( 22,155)( 23,160)( 24,159)
( 25,169)( 26,170)( 27,174)( 28,173)( 29,172)( 30,171)( 31,176)( 32,175)
( 33,185)( 34,186)( 35,190)( 36,189)( 37,188)( 38,187)( 39,192)( 40,191)
( 41,177)( 42,178)( 43,182)( 44,181)( 45,180)( 46,179)( 47,184)( 48,183)
( 49,121)( 50,122)( 51,126)( 52,125)( 53,124)( 54,123)( 55,128)( 56,127)
( 57,137)( 58,138)( 59,142)( 60,141)( 61,140)( 62,139)( 63,144)( 64,143)
( 65,129)( 66,130)( 67,134)( 68,133)( 69,132)( 70,131)( 71,136)( 72,135)
( 73, 97)( 74, 98)( 75,102)( 76,101)( 77,100)( 78, 99)( 79,104)( 80,103)
( 81,113)( 82,114)( 83,118)( 84,117)( 85,116)( 86,115)( 87,120)( 88,119)
( 89,105)( 90,106)( 91,110)( 92,109)( 93,108)( 94,107)( 95,112)( 96,111);;
s2 := ( 1, 65)( 2, 66)( 3, 71)( 4, 72)( 5, 70)( 6, 69)( 7, 67)( 8, 68)
( 9, 57)( 10, 58)( 11, 63)( 12, 64)( 13, 62)( 14, 61)( 15, 59)( 16, 60)
( 17, 49)( 18, 50)( 19, 55)( 20, 56)( 21, 54)( 22, 53)( 23, 51)( 24, 52)
( 25, 89)( 26, 90)( 27, 95)( 28, 96)( 29, 94)( 30, 93)( 31, 91)( 32, 92)
( 33, 81)( 34, 82)( 35, 87)( 36, 88)( 37, 86)( 38, 85)( 39, 83)( 40, 84)
( 41, 73)( 42, 74)( 43, 79)( 44, 80)( 45, 78)( 46, 77)( 47, 75)( 48, 76)
( 97,161)( 98,162)( 99,167)(100,168)(101,166)(102,165)(103,163)(104,164)
(105,153)(106,154)(107,159)(108,160)(109,158)(110,157)(111,155)(112,156)
(113,145)(114,146)(115,151)(116,152)(117,150)(118,149)(119,147)(120,148)
(121,185)(122,186)(123,191)(124,192)(125,190)(126,189)(127,187)(128,188)
(129,177)(130,178)(131,183)(132,184)(133,182)(134,181)(135,179)(136,180)
(137,169)(138,170)(139,175)(140,176)(141,174)(142,173)(143,171)(144,172);;
s3 := (193,194);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(194)!( 1, 53)( 2, 54)( 3, 56)( 4, 55)( 5, 50)( 6, 49)( 7, 51)
( 8, 52)( 9, 61)( 10, 62)( 11, 64)( 12, 63)( 13, 58)( 14, 57)( 15, 59)
( 16, 60)( 17, 69)( 18, 70)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 67)
( 24, 68)( 25, 77)( 26, 78)( 27, 80)( 28, 79)( 29, 74)( 30, 73)( 31, 75)
( 32, 76)( 33, 85)( 34, 86)( 35, 88)( 36, 87)( 37, 82)( 38, 81)( 39, 83)
( 40, 84)( 41, 93)( 42, 94)( 43, 96)( 44, 95)( 45, 90)( 46, 89)( 47, 91)
( 48, 92)( 97,149)( 98,150)( 99,152)(100,151)(101,146)(102,145)(103,147)
(104,148)(105,157)(106,158)(107,160)(108,159)(109,154)(110,153)(111,155)
(112,156)(113,165)(114,166)(115,168)(116,167)(117,162)(118,161)(119,163)
(120,164)(121,173)(122,174)(123,176)(124,175)(125,170)(126,169)(127,171)
(128,172)(129,181)(130,182)(131,184)(132,183)(133,178)(134,177)(135,179)
(136,180)(137,189)(138,190)(139,192)(140,191)(141,186)(142,185)(143,187)
(144,188);
s1 := Sym(194)!( 1,145)( 2,146)( 3,150)( 4,149)( 5,148)( 6,147)( 7,152)
( 8,151)( 9,161)( 10,162)( 11,166)( 12,165)( 13,164)( 14,163)( 15,168)
( 16,167)( 17,153)( 18,154)( 19,158)( 20,157)( 21,156)( 22,155)( 23,160)
( 24,159)( 25,169)( 26,170)( 27,174)( 28,173)( 29,172)( 30,171)( 31,176)
( 32,175)( 33,185)( 34,186)( 35,190)( 36,189)( 37,188)( 38,187)( 39,192)
( 40,191)( 41,177)( 42,178)( 43,182)( 44,181)( 45,180)( 46,179)( 47,184)
( 48,183)( 49,121)( 50,122)( 51,126)( 52,125)( 53,124)( 54,123)( 55,128)
( 56,127)( 57,137)( 58,138)( 59,142)( 60,141)( 61,140)( 62,139)( 63,144)
( 64,143)( 65,129)( 66,130)( 67,134)( 68,133)( 69,132)( 70,131)( 71,136)
( 72,135)( 73, 97)( 74, 98)( 75,102)( 76,101)( 77,100)( 78, 99)( 79,104)
( 80,103)( 81,113)( 82,114)( 83,118)( 84,117)( 85,116)( 86,115)( 87,120)
( 88,119)( 89,105)( 90,106)( 91,110)( 92,109)( 93,108)( 94,107)( 95,112)
( 96,111);
s2 := Sym(194)!( 1, 65)( 2, 66)( 3, 71)( 4, 72)( 5, 70)( 6, 69)( 7, 67)
( 8, 68)( 9, 57)( 10, 58)( 11, 63)( 12, 64)( 13, 62)( 14, 61)( 15, 59)
( 16, 60)( 17, 49)( 18, 50)( 19, 55)( 20, 56)( 21, 54)( 22, 53)( 23, 51)
( 24, 52)( 25, 89)( 26, 90)( 27, 95)( 28, 96)( 29, 94)( 30, 93)( 31, 91)
( 32, 92)( 33, 81)( 34, 82)( 35, 87)( 36, 88)( 37, 86)( 38, 85)( 39, 83)
( 40, 84)( 41, 73)( 42, 74)( 43, 79)( 44, 80)( 45, 78)( 46, 77)( 47, 75)
( 48, 76)( 97,161)( 98,162)( 99,167)(100,168)(101,166)(102,165)(103,163)
(104,164)(105,153)(106,154)(107,159)(108,160)(109,158)(110,157)(111,155)
(112,156)(113,145)(114,146)(115,151)(116,152)(117,150)(118,149)(119,147)
(120,148)(121,185)(122,186)(123,191)(124,192)(125,190)(126,189)(127,187)
(128,188)(129,177)(130,178)(131,183)(132,184)(133,182)(134,181)(135,179)
(136,180)(137,169)(138,170)(139,175)(140,176)(141,174)(142,173)(143,171)
(144,172);
s3 := Sym(194)!(193,194);
poly := sub<Sym(194)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0 >;
to this polytope