Polytope of Type {4,2,12,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,12,3}*768
if this polytope has a name.
Group : SmallGroup(768,1089307)
Rank : 5
Schlafli Type : {4,2,12,3}
Number of vertices, edges, etc : 4, 4, 16, 24, 4
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,6,3}*384, {2,2,12,3}*384
   4-fold quotients : {4,2,3,3}*192, {2,2,6,3}*192
   8-fold quotients : {2,2,3,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 7)( 8, 9)(10,23)(11,26)(13,18)(14,17)(15,35)(16,38)(19,41)(20,42)
(21,27)(22,24)(25,46)(28,45)(29,30)(31,47)(32,49)(33,36)(34,39)(37,51)(40,52)
(43,44);;
s3 := ( 5,13)( 6, 8)( 7,29)( 9,14)(10,52)(11,51)(12,17)(15,46)(16,45)(18,30)
(19,50)(20,48)(21,40)(22,37)(23,36)(24,38)(25,34)(26,39)(27,35)(28,33)(31,44)
(32,43)(41,47)(42,49);;
s4 := ( 5,50)( 6,44)( 7,43)( 8,40)( 9,52)(10,15)(11,16)(12,48)(13,28)(14,46)
(17,25)(18,45)(19,33)(20,34)(21,31)(22,32)(23,35)(24,49)(26,38)(27,47)(29,37)
(30,51)(36,41)(39,42);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!(2,3);
s1 := Sym(52)!(1,2)(3,4);
s2 := Sym(52)!( 6, 7)( 8, 9)(10,23)(11,26)(13,18)(14,17)(15,35)(16,38)(19,41)
(20,42)(21,27)(22,24)(25,46)(28,45)(29,30)(31,47)(32,49)(33,36)(34,39)(37,51)
(40,52)(43,44);
s3 := Sym(52)!( 5,13)( 6, 8)( 7,29)( 9,14)(10,52)(11,51)(12,17)(15,46)(16,45)
(18,30)(19,50)(20,48)(21,40)(22,37)(23,36)(24,38)(25,34)(26,39)(27,35)(28,33)
(31,44)(32,43)(41,47)(42,49);
s4 := Sym(52)!( 5,50)( 6,44)( 7,43)( 8,40)( 9,52)(10,15)(11,16)(12,48)(13,28)
(14,46)(17,25)(18,45)(19,33)(20,34)(21,31)(22,32)(23,35)(24,49)(26,38)(27,47)
(29,37)(30,51)(36,41)(39,42);
poly := sub<Sym(52)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope