include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,3,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,3,4,4}*768a
Also Known As : {{4,3}3,{3,4}3,{4,4}4}. if this polytope has another name.
Group : SmallGroup(768,1090070)
Rank : 5
Schlafli Type : {4,3,4,4}
Number of vertices, edges, etc : 4, 6, 12, 16, 8
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {4,3,4,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)(10,58)
(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,33)(18,34)(19,35)(20,36)(21,37)
(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)
(32,48);;
s1 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)
(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59);;
s2 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,33)(18,35)(19,34)(20,36)
(21,41)(22,43)(23,42)(24,44)(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)(31,46)
(32,48)(50,51)(53,57)(54,59)(55,58)(56,60)(62,63);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)(18,22)
(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)
(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)
(60,64);;
s4 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)(26,28)
(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47)(53,54)(55,56)(57,59)
(58,60)(61,64)(62,63);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s3*s2*s1*s3*s2*s1*s3*s2, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)
(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,33)(18,34)(19,35)(20,36)
(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)
(32,48);
s1 := Sym(64)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)
(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59);
s2 := Sym(64)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,33)(18,35)(19,34)
(20,36)(21,41)(22,43)(23,42)(24,44)(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)
(31,46)(32,48)(50,51)(53,57)(54,59)(55,58)(56,60)(62,63);
s3 := Sym(64)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)
(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)
(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)
(60,64);
s4 := Sym(64)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)
(26,28)(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47)(53,54)(55,56)
(57,59)(58,60)(61,64)(62,63);
poly := sub<Sym(64)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s0*s1*s2*s0*s1*s2*s0*s1, s1*s3*s2*s1*s3*s2*s1*s3*s2,
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >;
References : None.
to this polytope