Polytope of Type {4,24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24,4}*768o
if this polytope has a name.
Group : SmallGroup(768,1090111)
Rank : 4
Schlafli Type : {4,24,4}
Number of vertices, edges, etc : 4, 48, 48, 4
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,4}*384f
   4-fold quotients : {4,6,4}*192d
   8-fold quotients : {4,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 52)(  2, 51)(  3, 50)(  4, 49)(  5, 56)(  6, 55)(  7, 54)(  8, 53)
(  9, 60)( 10, 59)( 11, 58)( 12, 57)( 13, 64)( 14, 63)( 15, 62)( 16, 61)
( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 72)( 22, 71)( 23, 70)( 24, 69)
( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 80)( 30, 79)( 31, 78)( 32, 77)
( 33, 84)( 34, 83)( 35, 82)( 36, 81)( 37, 88)( 38, 87)( 39, 86)( 40, 85)
( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 96)( 46, 95)( 47, 94)( 48, 93)
( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)(104,149)
(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)(112,157)
(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)(120,165)
(121,172)(122,171)(123,170)(124,169)(125,176)(126,175)(127,174)(128,173)
(129,180)(130,179)(131,178)(132,177)(133,184)(134,183)(135,182)(136,181)
(137,188)(138,187)(139,186)(140,185)(141,192)(142,191)(143,190)(144,189)
(193,244)(194,243)(195,242)(196,241)(197,248)(198,247)(199,246)(200,245)
(201,252)(202,251)(203,250)(204,249)(205,256)(206,255)(207,254)(208,253)
(209,260)(210,259)(211,258)(212,257)(213,264)(214,263)(215,262)(216,261)
(217,268)(218,267)(219,266)(220,265)(221,272)(222,271)(223,270)(224,269)
(225,276)(226,275)(227,274)(228,273)(229,280)(230,279)(231,278)(232,277)
(233,284)(234,283)(235,282)(236,281)(237,288)(238,287)(239,286)(240,285)
(289,340)(290,339)(291,338)(292,337)(293,344)(294,343)(295,342)(296,341)
(297,348)(298,347)(299,346)(300,345)(301,352)(302,351)(303,350)(304,349)
(305,356)(306,355)(307,354)(308,353)(309,360)(310,359)(311,358)(312,357)
(313,364)(314,363)(315,362)(316,361)(317,368)(318,367)(319,366)(320,365)
(321,372)(322,371)(323,370)(324,369)(325,376)(326,375)(327,374)(328,373)
(329,380)(330,379)(331,378)(332,377)(333,384)(334,383)(335,382)(336,381);;
s1 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)( 55, 56)
( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)( 76, 95)
( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)(100,147)
(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)(108,159)
(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)(116,179)
(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)(124,191)
(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)(132,163)
(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)(140,175)
(141,169)(142,170)(143,172)(144,171)(193,289)(194,290)(195,292)(196,291)
(197,293)(198,294)(199,296)(200,295)(201,301)(202,302)(203,304)(204,303)
(205,297)(206,298)(207,300)(208,299)(209,321)(210,322)(211,324)(212,323)
(213,325)(214,326)(215,328)(216,327)(217,333)(218,334)(219,336)(220,335)
(221,329)(222,330)(223,332)(224,331)(225,305)(226,306)(227,308)(228,307)
(229,309)(230,310)(231,312)(232,311)(233,317)(234,318)(235,320)(236,319)
(237,313)(238,314)(239,316)(240,315)(241,337)(242,338)(243,340)(244,339)
(245,341)(246,342)(247,344)(248,343)(249,349)(250,350)(251,352)(252,351)
(253,345)(254,346)(255,348)(256,347)(257,369)(258,370)(259,372)(260,371)
(261,373)(262,374)(263,376)(264,375)(265,381)(266,382)(267,384)(268,383)
(269,377)(270,378)(271,380)(272,379)(273,353)(274,354)(275,356)(276,355)
(277,357)(278,358)(279,360)(280,359)(281,365)(282,366)(283,368)(284,367)
(285,361)(286,362)(287,364)(288,363);;
s2 := (  1,321)(  2,323)(  3,322)(  4,324)(  5,329)(  6,331)(  7,330)(  8,332)
(  9,325)( 10,327)( 11,326)( 12,328)( 13,333)( 14,335)( 15,334)( 16,336)
( 17,305)( 18,307)( 19,306)( 20,308)( 21,313)( 22,315)( 23,314)( 24,316)
( 25,309)( 26,311)( 27,310)( 28,312)( 29,317)( 30,319)( 31,318)( 32,320)
( 33,289)( 34,291)( 35,290)( 36,292)( 37,297)( 38,299)( 39,298)( 40,300)
( 41,293)( 42,295)( 43,294)( 44,296)( 45,301)( 46,303)( 47,302)( 48,304)
( 49,369)( 50,371)( 51,370)( 52,372)( 53,377)( 54,379)( 55,378)( 56,380)
( 57,373)( 58,375)( 59,374)( 60,376)( 61,381)( 62,383)( 63,382)( 64,384)
( 65,353)( 66,355)( 67,354)( 68,356)( 69,361)( 70,363)( 71,362)( 72,364)
( 73,357)( 74,359)( 75,358)( 76,360)( 77,365)( 78,367)( 79,366)( 80,368)
( 81,337)( 82,339)( 83,338)( 84,340)( 85,345)( 86,347)( 87,346)( 88,348)
( 89,341)( 90,343)( 91,342)( 92,344)( 93,349)( 94,351)( 95,350)( 96,352)
( 97,225)( 98,227)( 99,226)(100,228)(101,233)(102,235)(103,234)(104,236)
(105,229)(106,231)(107,230)(108,232)(109,237)(110,239)(111,238)(112,240)
(113,209)(114,211)(115,210)(116,212)(117,217)(118,219)(119,218)(120,220)
(121,213)(122,215)(123,214)(124,216)(125,221)(126,223)(127,222)(128,224)
(129,193)(130,195)(131,194)(132,196)(133,201)(134,203)(135,202)(136,204)
(137,197)(138,199)(139,198)(140,200)(141,205)(142,207)(143,206)(144,208)
(145,273)(146,275)(147,274)(148,276)(149,281)(150,283)(151,282)(152,284)
(153,277)(154,279)(155,278)(156,280)(157,285)(158,287)(159,286)(160,288)
(161,257)(162,259)(163,258)(164,260)(165,265)(166,267)(167,266)(168,268)
(169,261)(170,263)(171,262)(172,264)(173,269)(174,271)(175,270)(176,272)
(177,241)(178,243)(179,242)(180,244)(181,249)(182,251)(183,250)(184,252)
(185,245)(186,247)(187,246)(188,248)(189,253)(190,255)(191,254)(192,256);;
s3 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)(108,112)
(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)
(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)
(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160)
(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)(172,176)
(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)(188,192)
(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)(204,208)
(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)(220,224)
(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)(236,240)
(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)(252,256)
(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)(268,272)
(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)(284,288)
(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)(300,304)
(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)(316,320)
(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)(332,336)
(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)(348,352)
(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)(364,368)
(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)(380,384);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 52)(  2, 51)(  3, 50)(  4, 49)(  5, 56)(  6, 55)(  7, 54)
(  8, 53)(  9, 60)( 10, 59)( 11, 58)( 12, 57)( 13, 64)( 14, 63)( 15, 62)
( 16, 61)( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 72)( 22, 71)( 23, 70)
( 24, 69)( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 80)( 30, 79)( 31, 78)
( 32, 77)( 33, 84)( 34, 83)( 35, 82)( 36, 81)( 37, 88)( 38, 87)( 39, 86)
( 40, 85)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 96)( 46, 95)( 47, 94)
( 48, 93)( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)
(104,149)(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)
(112,157)(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)
(120,165)(121,172)(122,171)(123,170)(124,169)(125,176)(126,175)(127,174)
(128,173)(129,180)(130,179)(131,178)(132,177)(133,184)(134,183)(135,182)
(136,181)(137,188)(138,187)(139,186)(140,185)(141,192)(142,191)(143,190)
(144,189)(193,244)(194,243)(195,242)(196,241)(197,248)(198,247)(199,246)
(200,245)(201,252)(202,251)(203,250)(204,249)(205,256)(206,255)(207,254)
(208,253)(209,260)(210,259)(211,258)(212,257)(213,264)(214,263)(215,262)
(216,261)(217,268)(218,267)(219,266)(220,265)(221,272)(222,271)(223,270)
(224,269)(225,276)(226,275)(227,274)(228,273)(229,280)(230,279)(231,278)
(232,277)(233,284)(234,283)(235,282)(236,281)(237,288)(238,287)(239,286)
(240,285)(289,340)(290,339)(291,338)(292,337)(293,344)(294,343)(295,342)
(296,341)(297,348)(298,347)(299,346)(300,345)(301,352)(302,351)(303,350)
(304,349)(305,356)(306,355)(307,354)(308,353)(309,360)(310,359)(311,358)
(312,357)(313,364)(314,363)(315,362)(316,361)(317,368)(318,367)(319,366)
(320,365)(321,372)(322,371)(323,370)(324,369)(325,376)(326,375)(327,374)
(328,373)(329,380)(330,379)(331,378)(332,377)(333,384)(334,383)(335,382)
(336,381);
s1 := Sym(384)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)
( 55, 56)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)
( 76, 95)( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)
(100,147)(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)
(108,159)(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)
(116,179)(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)
(124,191)(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)
(132,163)(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)
(140,175)(141,169)(142,170)(143,172)(144,171)(193,289)(194,290)(195,292)
(196,291)(197,293)(198,294)(199,296)(200,295)(201,301)(202,302)(203,304)
(204,303)(205,297)(206,298)(207,300)(208,299)(209,321)(210,322)(211,324)
(212,323)(213,325)(214,326)(215,328)(216,327)(217,333)(218,334)(219,336)
(220,335)(221,329)(222,330)(223,332)(224,331)(225,305)(226,306)(227,308)
(228,307)(229,309)(230,310)(231,312)(232,311)(233,317)(234,318)(235,320)
(236,319)(237,313)(238,314)(239,316)(240,315)(241,337)(242,338)(243,340)
(244,339)(245,341)(246,342)(247,344)(248,343)(249,349)(250,350)(251,352)
(252,351)(253,345)(254,346)(255,348)(256,347)(257,369)(258,370)(259,372)
(260,371)(261,373)(262,374)(263,376)(264,375)(265,381)(266,382)(267,384)
(268,383)(269,377)(270,378)(271,380)(272,379)(273,353)(274,354)(275,356)
(276,355)(277,357)(278,358)(279,360)(280,359)(281,365)(282,366)(283,368)
(284,367)(285,361)(286,362)(287,364)(288,363);
s2 := Sym(384)!(  1,321)(  2,323)(  3,322)(  4,324)(  5,329)(  6,331)(  7,330)
(  8,332)(  9,325)( 10,327)( 11,326)( 12,328)( 13,333)( 14,335)( 15,334)
( 16,336)( 17,305)( 18,307)( 19,306)( 20,308)( 21,313)( 22,315)( 23,314)
( 24,316)( 25,309)( 26,311)( 27,310)( 28,312)( 29,317)( 30,319)( 31,318)
( 32,320)( 33,289)( 34,291)( 35,290)( 36,292)( 37,297)( 38,299)( 39,298)
( 40,300)( 41,293)( 42,295)( 43,294)( 44,296)( 45,301)( 46,303)( 47,302)
( 48,304)( 49,369)( 50,371)( 51,370)( 52,372)( 53,377)( 54,379)( 55,378)
( 56,380)( 57,373)( 58,375)( 59,374)( 60,376)( 61,381)( 62,383)( 63,382)
( 64,384)( 65,353)( 66,355)( 67,354)( 68,356)( 69,361)( 70,363)( 71,362)
( 72,364)( 73,357)( 74,359)( 75,358)( 76,360)( 77,365)( 78,367)( 79,366)
( 80,368)( 81,337)( 82,339)( 83,338)( 84,340)( 85,345)( 86,347)( 87,346)
( 88,348)( 89,341)( 90,343)( 91,342)( 92,344)( 93,349)( 94,351)( 95,350)
( 96,352)( 97,225)( 98,227)( 99,226)(100,228)(101,233)(102,235)(103,234)
(104,236)(105,229)(106,231)(107,230)(108,232)(109,237)(110,239)(111,238)
(112,240)(113,209)(114,211)(115,210)(116,212)(117,217)(118,219)(119,218)
(120,220)(121,213)(122,215)(123,214)(124,216)(125,221)(126,223)(127,222)
(128,224)(129,193)(130,195)(131,194)(132,196)(133,201)(134,203)(135,202)
(136,204)(137,197)(138,199)(139,198)(140,200)(141,205)(142,207)(143,206)
(144,208)(145,273)(146,275)(147,274)(148,276)(149,281)(150,283)(151,282)
(152,284)(153,277)(154,279)(155,278)(156,280)(157,285)(158,287)(159,286)
(160,288)(161,257)(162,259)(163,258)(164,260)(165,265)(166,267)(167,266)
(168,268)(169,261)(170,263)(171,262)(172,264)(173,269)(174,271)(175,270)
(176,272)(177,241)(178,243)(179,242)(180,244)(181,249)(182,251)(183,250)
(184,252)(185,245)(186,247)(187,246)(188,248)(189,253)(190,255)(191,254)
(192,256);
s3 := Sym(384)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)
(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)
(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)
(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)
(156,160)(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)
(172,176)(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)
(188,192)(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)
(204,208)(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)
(220,224)(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)
(236,240)(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)
(252,256)(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)
(268,272)(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)
(284,288)(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)
(300,304)(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)
(316,320)(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)
(332,336)(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)
(348,352)(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)
(364,368)(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)
(380,384);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0 >; 
 
References : None.
to this polytope