include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,12,4}*768b
if this polytope has a name.
Group : SmallGroup(768,1090143)
Rank : 6
Schlafli Type : {2,2,2,12,4}
Number of vertices, edges, etc : 2, 2, 2, 12, 24, 4
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,6,4}*384c
4-fold quotients : {2,2,2,3,4}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11)(12,22)(14,18)(15,17)(16,30)(19,35)(20,38)(21,23)(24,40)
(25,26)(27,43)(28,46)(29,36)(31,34)(32,50)(33,47)(37,49)(41,52)(42,44)(45,54)
(48,51);;
s4 := ( 7,14)( 8,10)( 9,25)(11,15)(12,49)(13,17)(16,40)(18,26)(19,54)(20,48)
(21,32)(22,31)(23,35)(24,29)(27,50)(28,39)(30,44)(33,53)(34,45)(36,43)(37,42)
(38,47)(41,51)(46,52);;
s5 := ( 7,39)( 8,48)( 9,51)(10,40)(11,24)(12,22)(13,53)(14,49)(15,32)(16,35)
(17,50)(18,37)(19,30)(20,23)(21,38)(25,54)(26,45)(27,43)(28,31)(29,47)(33,36)
(34,46)(41,44)(42,52);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!(1,2);
s1 := Sym(54)!(3,4);
s2 := Sym(54)!(5,6);
s3 := Sym(54)!( 8, 9)(10,11)(12,22)(14,18)(15,17)(16,30)(19,35)(20,38)(21,23)
(24,40)(25,26)(27,43)(28,46)(29,36)(31,34)(32,50)(33,47)(37,49)(41,52)(42,44)
(45,54)(48,51);
s4 := Sym(54)!( 7,14)( 8,10)( 9,25)(11,15)(12,49)(13,17)(16,40)(18,26)(19,54)
(20,48)(21,32)(22,31)(23,35)(24,29)(27,50)(28,39)(30,44)(33,53)(34,45)(36,43)
(37,42)(38,47)(41,51)(46,52);
s5 := Sym(54)!( 7,39)( 8,48)( 9,51)(10,40)(11,24)(12,22)(13,53)(14,49)(15,32)
(16,35)(17,50)(18,37)(19,30)(20,23)(21,38)(25,54)(26,45)(27,43)(28,31)(29,47)
(33,36)(34,46)(41,44)(42,52);
poly := sub<Sym(54)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope