Polytope of Type {4,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,4}*768l
if this polytope has a name.
Group : SmallGroup(768,1090183)
Rank : 4
Schlafli Type : {4,12,4}
Number of vertices, edges, etc : 4, 48, 48, 8
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,4}*384c
   4-fold quotients : {4,3,4}*192a, {4,6,4}*192d, {4,6,4}*192e
   8-fold quotients : {4,6,2}*96c, {4,3,4}*96
   16-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 52)(  2, 51)(  3, 50)(  4, 49)(  5, 56)(  6, 55)(  7, 54)(  8, 53)
(  9, 60)( 10, 59)( 11, 58)( 12, 57)( 13, 64)( 14, 63)( 15, 62)( 16, 61)
( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 72)( 22, 71)( 23, 70)( 24, 69)
( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 80)( 30, 79)( 31, 78)( 32, 77)
( 33, 84)( 34, 83)( 35, 82)( 36, 81)( 37, 88)( 38, 87)( 39, 86)( 40, 85)
( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 96)( 46, 95)( 47, 94)( 48, 93)
( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)(104,149)
(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)(112,157)
(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)(120,165)
(121,172)(122,171)(123,170)(124,169)(125,176)(126,175)(127,174)(128,173)
(129,180)(130,179)(131,178)(132,177)(133,184)(134,183)(135,182)(136,181)
(137,188)(138,187)(139,186)(140,185)(141,192)(142,191)(143,190)(144,189);;
s1 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)( 55, 56)
( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)( 76, 95)
( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)(100,147)
(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)(108,159)
(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)(116,179)
(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)(124,191)
(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)(132,163)
(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)(140,175)
(141,169)(142,170)(143,172)(144,171);;
s2 := (  1,129)(  2,131)(  3,130)(  4,132)(  5,137)(  6,139)(  7,138)(  8,140)
(  9,133)( 10,135)( 11,134)( 12,136)( 13,141)( 14,143)( 15,142)( 16,144)
( 17,113)( 18,115)( 19,114)( 20,116)( 21,121)( 22,123)( 23,122)( 24,124)
( 25,117)( 26,119)( 27,118)( 28,120)( 29,125)( 30,127)( 31,126)( 32,128)
( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,105)( 38,107)( 39,106)( 40,108)
( 41,101)( 42,103)( 43,102)( 44,104)( 45,109)( 46,111)( 47,110)( 48,112)
( 49,177)( 50,179)( 51,178)( 52,180)( 53,185)( 54,187)( 55,186)( 56,188)
( 57,181)( 58,183)( 59,182)( 60,184)( 61,189)( 62,191)( 63,190)( 64,192)
( 65,161)( 66,163)( 67,162)( 68,164)( 69,169)( 70,171)( 71,170)( 72,172)
( 73,165)( 74,167)( 75,166)( 76,168)( 77,173)( 78,175)( 79,174)( 80,176)
( 81,145)( 82,147)( 83,146)( 84,148)( 85,153)( 86,155)( 87,154)( 88,156)
( 89,149)( 90,151)( 91,150)( 92,152)( 93,157)( 94,159)( 95,158)( 96,160);;
s3 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)(104,148)
(105,157)(106,158)(107,159)(108,160)(109,153)(110,154)(111,155)(112,156)
(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)(120,164)
(121,173)(122,174)(123,175)(124,176)(125,169)(126,170)(127,171)(128,172)
(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)(136,180)
(137,189)(138,190)(139,191)(140,192)(141,185)(142,186)(143,187)(144,188);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1, 52)(  2, 51)(  3, 50)(  4, 49)(  5, 56)(  6, 55)(  7, 54)
(  8, 53)(  9, 60)( 10, 59)( 11, 58)( 12, 57)( 13, 64)( 14, 63)( 15, 62)
( 16, 61)( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 72)( 22, 71)( 23, 70)
( 24, 69)( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29, 80)( 30, 79)( 31, 78)
( 32, 77)( 33, 84)( 34, 83)( 35, 82)( 36, 81)( 37, 88)( 38, 87)( 39, 86)
( 40, 85)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 96)( 46, 95)( 47, 94)
( 48, 93)( 97,148)( 98,147)( 99,146)(100,145)(101,152)(102,151)(103,150)
(104,149)(105,156)(106,155)(107,154)(108,153)(109,160)(110,159)(111,158)
(112,157)(113,164)(114,163)(115,162)(116,161)(117,168)(118,167)(119,166)
(120,165)(121,172)(122,171)(123,170)(124,169)(125,176)(126,175)(127,174)
(128,173)(129,180)(130,179)(131,178)(132,177)(133,184)(134,183)(135,182)
(136,181)(137,188)(138,187)(139,186)(140,185)(141,192)(142,191)(143,190)
(144,189);
s1 := Sym(192)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)
( 55, 56)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)
( 76, 95)( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)
(100,147)(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)
(108,159)(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)
(116,179)(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)
(124,191)(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)
(132,163)(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)
(140,175)(141,169)(142,170)(143,172)(144,171);
s2 := Sym(192)!(  1,129)(  2,131)(  3,130)(  4,132)(  5,137)(  6,139)(  7,138)
(  8,140)(  9,133)( 10,135)( 11,134)( 12,136)( 13,141)( 14,143)( 15,142)
( 16,144)( 17,113)( 18,115)( 19,114)( 20,116)( 21,121)( 22,123)( 23,122)
( 24,124)( 25,117)( 26,119)( 27,118)( 28,120)( 29,125)( 30,127)( 31,126)
( 32,128)( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,105)( 38,107)( 39,106)
( 40,108)( 41,101)( 42,103)( 43,102)( 44,104)( 45,109)( 46,111)( 47,110)
( 48,112)( 49,177)( 50,179)( 51,178)( 52,180)( 53,185)( 54,187)( 55,186)
( 56,188)( 57,181)( 58,183)( 59,182)( 60,184)( 61,189)( 62,191)( 63,190)
( 64,192)( 65,161)( 66,163)( 67,162)( 68,164)( 69,169)( 70,171)( 71,170)
( 72,172)( 73,165)( 74,167)( 75,166)( 76,168)( 77,173)( 78,175)( 79,174)
( 80,176)( 81,145)( 82,147)( 83,146)( 84,148)( 85,153)( 86,155)( 87,154)
( 88,156)( 89,149)( 90,151)( 91,150)( 92,152)( 93,157)( 94,159)( 95,158)
( 96,160);
s3 := Sym(192)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)
(104,148)(105,157)(106,158)(107,159)(108,160)(109,153)(110,154)(111,155)
(112,156)(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)
(120,164)(121,173)(122,174)(123,175)(124,176)(125,169)(126,170)(127,171)
(128,172)(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)
(136,180)(137,189)(138,190)(139,191)(140,192)(141,185)(142,186)(143,187)
(144,188);
poly := sub<Sym(192)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope