Polytope of Type {4,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,4}*768o
if this polytope has a name.
Group : SmallGroup(768,1090188)
Rank : 4
Schlafli Type : {4,12,4}
Number of vertices, edges, etc : 8, 48, 48, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,4}*384f, {4,12,4}*384h, {4,6,4}*384d
   4-fold quotients : {2,12,4}*192b, {4,3,4}*192b, {4,6,4}*192d, {4,6,4}*192f
   8-fold quotients : {2,6,4}*96c, {4,3,4}*96
   16-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,196)(  2,195)(  3,194)(  4,193)(  5,200)(  6,199)(  7,198)(  8,197)
(  9,204)( 10,203)( 11,202)( 12,201)( 13,208)( 14,207)( 15,206)( 16,205)
( 17,212)( 18,211)( 19,210)( 20,209)( 21,216)( 22,215)( 23,214)( 24,213)
( 25,220)( 26,219)( 27,218)( 28,217)( 29,224)( 30,223)( 31,222)( 32,221)
( 33,228)( 34,227)( 35,226)( 36,225)( 37,232)( 38,231)( 39,230)( 40,229)
( 41,236)( 42,235)( 43,234)( 44,233)( 45,240)( 46,239)( 47,238)( 48,237)
( 49,244)( 50,243)( 51,242)( 52,241)( 53,248)( 54,247)( 55,246)( 56,245)
( 57,252)( 58,251)( 59,250)( 60,249)( 61,256)( 62,255)( 63,254)( 64,253)
( 65,260)( 66,259)( 67,258)( 68,257)( 69,264)( 70,263)( 71,262)( 72,261)
( 73,268)( 74,267)( 75,266)( 76,265)( 77,272)( 78,271)( 79,270)( 80,269)
( 81,276)( 82,275)( 83,274)( 84,273)( 85,280)( 86,279)( 87,278)( 88,277)
( 89,284)( 90,283)( 91,282)( 92,281)( 93,288)( 94,287)( 95,286)( 96,285)
( 97,292)( 98,291)( 99,290)(100,289)(101,296)(102,295)(103,294)(104,293)
(105,300)(106,299)(107,298)(108,297)(109,304)(110,303)(111,302)(112,301)
(113,308)(114,307)(115,306)(116,305)(117,312)(118,311)(119,310)(120,309)
(121,316)(122,315)(123,314)(124,313)(125,320)(126,319)(127,318)(128,317)
(129,324)(130,323)(131,322)(132,321)(133,328)(134,327)(135,326)(136,325)
(137,332)(138,331)(139,330)(140,329)(141,336)(142,335)(143,334)(144,333)
(145,340)(146,339)(147,338)(148,337)(149,344)(150,343)(151,342)(152,341)
(153,348)(154,347)(155,346)(156,345)(157,352)(158,351)(159,350)(160,349)
(161,356)(162,355)(163,354)(164,353)(165,360)(166,359)(167,358)(168,357)
(169,364)(170,363)(171,362)(172,361)(173,368)(174,367)(175,366)(176,365)
(177,372)(178,371)(179,370)(180,369)(181,376)(182,375)(183,374)(184,373)
(185,380)(186,379)(187,378)(188,377)(189,384)(190,383)(191,382)(192,381);;
s1 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)( 55, 56)
( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)( 76, 95)
( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)(100,147)
(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)(108,159)
(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)(116,179)
(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)(124,191)
(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)(132,163)
(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)(140,175)
(141,169)(142,170)(143,172)(144,171)(195,196)(199,200)(201,205)(202,206)
(203,208)(204,207)(209,225)(210,226)(211,228)(212,227)(213,229)(214,230)
(215,232)(216,231)(217,237)(218,238)(219,240)(220,239)(221,233)(222,234)
(223,236)(224,235)(243,244)(247,248)(249,253)(250,254)(251,256)(252,255)
(257,273)(258,274)(259,276)(260,275)(261,277)(262,278)(263,280)(264,279)
(265,285)(266,286)(267,288)(268,287)(269,281)(270,282)(271,284)(272,283)
(289,337)(290,338)(291,340)(292,339)(293,341)(294,342)(295,344)(296,343)
(297,349)(298,350)(299,352)(300,351)(301,345)(302,346)(303,348)(304,347)
(305,369)(306,370)(307,372)(308,371)(309,373)(310,374)(311,376)(312,375)
(313,381)(314,382)(315,384)(316,383)(317,377)(318,378)(319,380)(320,379)
(321,353)(322,354)(323,356)(324,355)(325,357)(326,358)(327,360)(328,359)
(329,365)(330,366)(331,368)(332,367)(333,361)(334,362)(335,364)(336,363);;
s2 := (  1,177)(  2,179)(  3,178)(  4,180)(  5,185)(  6,187)(  7,186)(  8,188)
(  9,181)( 10,183)( 11,182)( 12,184)( 13,189)( 14,191)( 15,190)( 16,192)
( 17,161)( 18,163)( 19,162)( 20,164)( 21,169)( 22,171)( 23,170)( 24,172)
( 25,165)( 26,167)( 27,166)( 28,168)( 29,173)( 30,175)( 31,174)( 32,176)
( 33,145)( 34,147)( 35,146)( 36,148)( 37,153)( 38,155)( 39,154)( 40,156)
( 41,149)( 42,151)( 43,150)( 44,152)( 45,157)( 46,159)( 47,158)( 48,160)
( 49,129)( 50,131)( 51,130)( 52,132)( 53,137)( 54,139)( 55,138)( 56,140)
( 57,133)( 58,135)( 59,134)( 60,136)( 61,141)( 62,143)( 63,142)( 64,144)
( 65,113)( 66,115)( 67,114)( 68,116)( 69,121)( 70,123)( 71,122)( 72,124)
( 73,117)( 74,119)( 75,118)( 76,120)( 77,125)( 78,127)( 79,126)( 80,128)
( 81, 97)( 82, 99)( 83, 98)( 84,100)( 85,105)( 86,107)( 87,106)( 88,108)
( 89,101)( 90,103)( 91,102)( 92,104)( 93,109)( 94,111)( 95,110)( 96,112)
(193,369)(194,371)(195,370)(196,372)(197,377)(198,379)(199,378)(200,380)
(201,373)(202,375)(203,374)(204,376)(205,381)(206,383)(207,382)(208,384)
(209,353)(210,355)(211,354)(212,356)(213,361)(214,363)(215,362)(216,364)
(217,357)(218,359)(219,358)(220,360)(221,365)(222,367)(223,366)(224,368)
(225,337)(226,339)(227,338)(228,340)(229,345)(230,347)(231,346)(232,348)
(233,341)(234,343)(235,342)(236,344)(237,349)(238,351)(239,350)(240,352)
(241,321)(242,323)(243,322)(244,324)(245,329)(246,331)(247,330)(248,332)
(249,325)(250,327)(251,326)(252,328)(253,333)(254,335)(255,334)(256,336)
(257,305)(258,307)(259,306)(260,308)(261,313)(262,315)(263,314)(264,316)
(265,309)(266,311)(267,310)(268,312)(269,317)(270,319)(271,318)(272,320)
(273,289)(274,291)(275,290)(276,292)(277,297)(278,299)(279,298)(280,300)
(281,293)(282,295)(283,294)(284,296)(285,301)(286,303)(287,302)(288,304);;
s3 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)(108,112)
(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)
(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)
(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160)
(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)(172,176)
(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)(188,192)
(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)(204,208)
(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)(220,224)
(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)(236,240)
(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)(252,256)
(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)(268,272)
(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)(284,288)
(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)(300,304)
(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)(316,320)
(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)(332,336)
(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)(348,352)
(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)(364,368)
(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)(380,384);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1,196)(  2,195)(  3,194)(  4,193)(  5,200)(  6,199)(  7,198)
(  8,197)(  9,204)( 10,203)( 11,202)( 12,201)( 13,208)( 14,207)( 15,206)
( 16,205)( 17,212)( 18,211)( 19,210)( 20,209)( 21,216)( 22,215)( 23,214)
( 24,213)( 25,220)( 26,219)( 27,218)( 28,217)( 29,224)( 30,223)( 31,222)
( 32,221)( 33,228)( 34,227)( 35,226)( 36,225)( 37,232)( 38,231)( 39,230)
( 40,229)( 41,236)( 42,235)( 43,234)( 44,233)( 45,240)( 46,239)( 47,238)
( 48,237)( 49,244)( 50,243)( 51,242)( 52,241)( 53,248)( 54,247)( 55,246)
( 56,245)( 57,252)( 58,251)( 59,250)( 60,249)( 61,256)( 62,255)( 63,254)
( 64,253)( 65,260)( 66,259)( 67,258)( 68,257)( 69,264)( 70,263)( 71,262)
( 72,261)( 73,268)( 74,267)( 75,266)( 76,265)( 77,272)( 78,271)( 79,270)
( 80,269)( 81,276)( 82,275)( 83,274)( 84,273)( 85,280)( 86,279)( 87,278)
( 88,277)( 89,284)( 90,283)( 91,282)( 92,281)( 93,288)( 94,287)( 95,286)
( 96,285)( 97,292)( 98,291)( 99,290)(100,289)(101,296)(102,295)(103,294)
(104,293)(105,300)(106,299)(107,298)(108,297)(109,304)(110,303)(111,302)
(112,301)(113,308)(114,307)(115,306)(116,305)(117,312)(118,311)(119,310)
(120,309)(121,316)(122,315)(123,314)(124,313)(125,320)(126,319)(127,318)
(128,317)(129,324)(130,323)(131,322)(132,321)(133,328)(134,327)(135,326)
(136,325)(137,332)(138,331)(139,330)(140,329)(141,336)(142,335)(143,334)
(144,333)(145,340)(146,339)(147,338)(148,337)(149,344)(150,343)(151,342)
(152,341)(153,348)(154,347)(155,346)(156,345)(157,352)(158,351)(159,350)
(160,349)(161,356)(162,355)(163,354)(164,353)(165,360)(166,359)(167,358)
(168,357)(169,364)(170,363)(171,362)(172,361)(173,368)(174,367)(175,366)
(176,365)(177,372)(178,371)(179,370)(180,369)(181,376)(182,375)(183,374)
(184,373)(185,380)(186,379)(187,378)(188,377)(189,384)(190,383)(191,382)
(192,381);
s1 := Sym(384)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)
( 55, 56)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)
( 76, 95)( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)
(100,147)(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)
(108,159)(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)
(116,179)(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)
(124,191)(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)
(132,163)(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)
(140,175)(141,169)(142,170)(143,172)(144,171)(195,196)(199,200)(201,205)
(202,206)(203,208)(204,207)(209,225)(210,226)(211,228)(212,227)(213,229)
(214,230)(215,232)(216,231)(217,237)(218,238)(219,240)(220,239)(221,233)
(222,234)(223,236)(224,235)(243,244)(247,248)(249,253)(250,254)(251,256)
(252,255)(257,273)(258,274)(259,276)(260,275)(261,277)(262,278)(263,280)
(264,279)(265,285)(266,286)(267,288)(268,287)(269,281)(270,282)(271,284)
(272,283)(289,337)(290,338)(291,340)(292,339)(293,341)(294,342)(295,344)
(296,343)(297,349)(298,350)(299,352)(300,351)(301,345)(302,346)(303,348)
(304,347)(305,369)(306,370)(307,372)(308,371)(309,373)(310,374)(311,376)
(312,375)(313,381)(314,382)(315,384)(316,383)(317,377)(318,378)(319,380)
(320,379)(321,353)(322,354)(323,356)(324,355)(325,357)(326,358)(327,360)
(328,359)(329,365)(330,366)(331,368)(332,367)(333,361)(334,362)(335,364)
(336,363);
s2 := Sym(384)!(  1,177)(  2,179)(  3,178)(  4,180)(  5,185)(  6,187)(  7,186)
(  8,188)(  9,181)( 10,183)( 11,182)( 12,184)( 13,189)( 14,191)( 15,190)
( 16,192)( 17,161)( 18,163)( 19,162)( 20,164)( 21,169)( 22,171)( 23,170)
( 24,172)( 25,165)( 26,167)( 27,166)( 28,168)( 29,173)( 30,175)( 31,174)
( 32,176)( 33,145)( 34,147)( 35,146)( 36,148)( 37,153)( 38,155)( 39,154)
( 40,156)( 41,149)( 42,151)( 43,150)( 44,152)( 45,157)( 46,159)( 47,158)
( 48,160)( 49,129)( 50,131)( 51,130)( 52,132)( 53,137)( 54,139)( 55,138)
( 56,140)( 57,133)( 58,135)( 59,134)( 60,136)( 61,141)( 62,143)( 63,142)
( 64,144)( 65,113)( 66,115)( 67,114)( 68,116)( 69,121)( 70,123)( 71,122)
( 72,124)( 73,117)( 74,119)( 75,118)( 76,120)( 77,125)( 78,127)( 79,126)
( 80,128)( 81, 97)( 82, 99)( 83, 98)( 84,100)( 85,105)( 86,107)( 87,106)
( 88,108)( 89,101)( 90,103)( 91,102)( 92,104)( 93,109)( 94,111)( 95,110)
( 96,112)(193,369)(194,371)(195,370)(196,372)(197,377)(198,379)(199,378)
(200,380)(201,373)(202,375)(203,374)(204,376)(205,381)(206,383)(207,382)
(208,384)(209,353)(210,355)(211,354)(212,356)(213,361)(214,363)(215,362)
(216,364)(217,357)(218,359)(219,358)(220,360)(221,365)(222,367)(223,366)
(224,368)(225,337)(226,339)(227,338)(228,340)(229,345)(230,347)(231,346)
(232,348)(233,341)(234,343)(235,342)(236,344)(237,349)(238,351)(239,350)
(240,352)(241,321)(242,323)(243,322)(244,324)(245,329)(246,331)(247,330)
(248,332)(249,325)(250,327)(251,326)(252,328)(253,333)(254,335)(255,334)
(256,336)(257,305)(258,307)(259,306)(260,308)(261,313)(262,315)(263,314)
(264,316)(265,309)(266,311)(267,310)(268,312)(269,317)(270,319)(271,318)
(272,320)(273,289)(274,291)(275,290)(276,292)(277,297)(278,299)(279,298)
(280,300)(281,293)(282,295)(283,294)(284,296)(285,301)(286,303)(287,302)
(288,304);
s3 := Sym(384)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)
(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)
(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)
(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)
(156,160)(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)
(172,176)(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)
(188,192)(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)
(204,208)(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)
(220,224)(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)
(236,240)(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)
(252,256)(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)
(268,272)(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)
(284,288)(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)
(300,304)(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)
(316,320)(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)
(332,336)(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)
(348,352)(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)
(364,368)(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)
(380,384);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope