include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,4,2}*768h
if this polytope has a name.
Group : SmallGroup(768,1090188)
Rank : 5
Schlafli Type : {4,12,4,2}
Number of vertices, edges, etc : 4, 24, 24, 4, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,4,2}*384d
4-fold quotients : {4,3,4,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 81)( 42, 82)( 43, 83)( 44, 84)( 45, 85)( 46, 86)( 47, 87)( 48, 88)
( 97,153)( 98,154)( 99,155)(100,156)(101,157)(102,158)(103,159)(104,160)
(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)
(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)
(121,161)(122,162)(123,163)(124,164)(125,165)(126,166)(127,167)(128,168)
(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)
(137,177)(138,178)(139,179)(140,180)(141,181)(142,182)(143,183)(144,184);;
s1 := ( 1, 17)( 2, 20)( 3, 19)( 4, 18)( 5, 25)( 6, 28)( 7, 27)( 8, 26)
( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 13, 29)( 14, 32)( 15, 31)( 16, 30)
( 34, 36)( 37, 41)( 38, 44)( 39, 43)( 40, 42)( 46, 48)( 49, 65)( 50, 68)
( 51, 67)( 52, 66)( 53, 73)( 54, 76)( 55, 75)( 56, 74)( 57, 69)( 58, 72)
( 59, 71)( 60, 70)( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 82, 84)( 85, 89)
( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,161)( 98,164)( 99,163)(100,162)
(101,169)(102,172)(103,171)(104,170)(105,165)(106,168)(107,167)(108,166)
(109,173)(110,176)(111,175)(112,174)(113,145)(114,148)(115,147)(116,146)
(117,153)(118,156)(119,155)(120,154)(121,149)(122,152)(123,151)(124,150)
(125,157)(126,160)(127,159)(128,158)(129,177)(130,180)(131,179)(132,178)
(133,185)(134,188)(135,187)(136,186)(137,181)(138,184)(139,183)(140,182)
(141,189)(142,192)(143,191)(144,190);;
s2 := ( 1, 97)( 2, 98)( 3,100)( 4, 99)( 5,109)( 6,110)( 7,112)( 8,111)
( 9,105)( 10,106)( 11,108)( 12,107)( 13,101)( 14,102)( 15,104)( 16,103)
( 17,129)( 18,130)( 19,132)( 20,131)( 21,141)( 22,142)( 23,144)( 24,143)
( 25,137)( 26,138)( 27,140)( 28,139)( 29,133)( 30,134)( 31,136)( 32,135)
( 33,113)( 34,114)( 35,116)( 36,115)( 37,125)( 38,126)( 39,128)( 40,127)
( 41,121)( 42,122)( 43,124)( 44,123)( 45,117)( 46,118)( 47,120)( 48,119)
( 49,145)( 50,146)( 51,148)( 52,147)( 53,157)( 54,158)( 55,160)( 56,159)
( 57,153)( 58,154)( 59,156)( 60,155)( 61,149)( 62,150)( 63,152)( 64,151)
( 65,177)( 66,178)( 67,180)( 68,179)( 69,189)( 70,190)( 71,192)( 72,191)
( 73,185)( 74,186)( 75,188)( 76,187)( 77,181)( 78,182)( 79,184)( 80,183)
( 81,161)( 82,162)( 83,164)( 84,163)( 85,173)( 86,174)( 87,176)( 88,175)
( 89,169)( 90,170)( 91,172)( 92,171)( 93,165)( 94,166)( 95,168)( 96,167);;
s3 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192);;
s4 := (193,194);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(194)!( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 81)( 42, 82)( 43, 83)( 44, 84)( 45, 85)( 46, 86)( 47, 87)
( 48, 88)( 97,153)( 98,154)( 99,155)(100,156)(101,157)(102,158)(103,159)
(104,160)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)
(112,152)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)
(120,176)(121,161)(122,162)(123,163)(124,164)(125,165)(126,166)(127,167)
(128,168)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)
(136,192)(137,177)(138,178)(139,179)(140,180)(141,181)(142,182)(143,183)
(144,184);
s1 := Sym(194)!( 1, 17)( 2, 20)( 3, 19)( 4, 18)( 5, 25)( 6, 28)( 7, 27)
( 8, 26)( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 13, 29)( 14, 32)( 15, 31)
( 16, 30)( 34, 36)( 37, 41)( 38, 44)( 39, 43)( 40, 42)( 46, 48)( 49, 65)
( 50, 68)( 51, 67)( 52, 66)( 53, 73)( 54, 76)( 55, 75)( 56, 74)( 57, 69)
( 58, 72)( 59, 71)( 60, 70)( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 82, 84)
( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,161)( 98,164)( 99,163)
(100,162)(101,169)(102,172)(103,171)(104,170)(105,165)(106,168)(107,167)
(108,166)(109,173)(110,176)(111,175)(112,174)(113,145)(114,148)(115,147)
(116,146)(117,153)(118,156)(119,155)(120,154)(121,149)(122,152)(123,151)
(124,150)(125,157)(126,160)(127,159)(128,158)(129,177)(130,180)(131,179)
(132,178)(133,185)(134,188)(135,187)(136,186)(137,181)(138,184)(139,183)
(140,182)(141,189)(142,192)(143,191)(144,190);
s2 := Sym(194)!( 1, 97)( 2, 98)( 3,100)( 4, 99)( 5,109)( 6,110)( 7,112)
( 8,111)( 9,105)( 10,106)( 11,108)( 12,107)( 13,101)( 14,102)( 15,104)
( 16,103)( 17,129)( 18,130)( 19,132)( 20,131)( 21,141)( 22,142)( 23,144)
( 24,143)( 25,137)( 26,138)( 27,140)( 28,139)( 29,133)( 30,134)( 31,136)
( 32,135)( 33,113)( 34,114)( 35,116)( 36,115)( 37,125)( 38,126)( 39,128)
( 40,127)( 41,121)( 42,122)( 43,124)( 44,123)( 45,117)( 46,118)( 47,120)
( 48,119)( 49,145)( 50,146)( 51,148)( 52,147)( 53,157)( 54,158)( 55,160)
( 56,159)( 57,153)( 58,154)( 59,156)( 60,155)( 61,149)( 62,150)( 63,152)
( 64,151)( 65,177)( 66,178)( 67,180)( 68,179)( 69,189)( 70,190)( 71,192)
( 72,191)( 73,185)( 74,186)( 75,188)( 76,187)( 77,181)( 78,182)( 79,184)
( 80,183)( 81,161)( 82,162)( 83,164)( 84,163)( 85,173)( 86,174)( 87,176)
( 88,175)( 89,169)( 90,170)( 91,172)( 92,171)( 93,165)( 94,166)( 95,168)
( 96,167);
s3 := Sym(194)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192);
s4 := Sym(194)!(193,194);
poly := sub<Sym(194)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1 >;
to this polytope