include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,3,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,3,4}*768c
if this polytope has a name.
Group : SmallGroup(768,1090209)
Rank : 4
Schlafli Type : {8,3,4}
Number of vertices, edges, etc : 16, 48, 24, 8
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 4
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,3,4}*384
4-fold quotients : {4,3,4}*192a, {4,3,4}*192b
8-fold quotients : {2,3,4}*96, {4,3,2}*96, {4,3,4}*96
16-fold quotients : {2,3,4}*48, {4,3,2}*48
32-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,104)( 2,103)( 3,102)( 4,101)( 5, 99)( 6,100)( 7, 97)( 8, 98)
( 9,112)( 10,111)( 11,110)( 12,109)( 13,107)( 14,108)( 15,105)( 16,106)
( 17,120)( 18,119)( 19,118)( 20,117)( 21,115)( 22,116)( 23,113)( 24,114)
( 25,128)( 26,127)( 27,126)( 28,125)( 29,123)( 30,124)( 31,121)( 32,122)
( 33,136)( 34,135)( 35,134)( 36,133)( 37,131)( 38,132)( 39,129)( 40,130)
( 41,144)( 42,143)( 43,142)( 44,141)( 45,139)( 46,140)( 47,137)( 48,138)
( 49,152)( 50,151)( 51,150)( 52,149)( 53,147)( 54,148)( 55,145)( 56,146)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,155)( 62,156)( 63,153)( 64,154)
( 65,168)( 66,167)( 67,166)( 68,165)( 69,163)( 70,164)( 71,161)( 72,162)
( 73,176)( 74,175)( 75,174)( 76,173)( 77,171)( 78,172)( 79,169)( 80,170)
( 81,184)( 82,183)( 83,182)( 84,181)( 85,179)( 86,180)( 87,177)( 88,178)
( 89,192)( 90,191)( 91,190)( 92,189)( 93,187)( 94,188)( 95,185)( 96,186);;
s1 := ( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)( 18, 26)
( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)
( 43, 76)( 44, 75)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)
( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)
( 59, 84)( 60, 83)( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)(101,104)
(102,103)(105,106)(109,112)(110,111)(113,122)(114,121)(115,123)(116,124)
(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,163)(132,164)
(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,171)(140,172)
(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,187)(148,188)
(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,179)(156,180)
(157,184)(158,183)(159,182)(160,181);;
s2 := ( 1, 65)( 2, 66)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 72)( 8, 71)
( 9, 81)( 10, 82)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)( 16, 87)
( 17, 73)( 18, 74)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)( 24, 79)
( 25, 89)( 26, 90)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)( 32, 95)
( 35, 38)( 36, 37)( 39, 40)( 41, 49)( 42, 50)( 43, 54)( 44, 53)( 45, 52)
( 46, 51)( 47, 56)( 48, 55)( 59, 62)( 60, 61)( 63, 64)( 97,162)( 98,161)
( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)(106,177)
(107,181)(108,182)(109,179)(110,180)(111,183)(112,184)(113,170)(114,169)
(115,173)(116,174)(117,171)(118,172)(119,175)(120,176)(121,186)(122,185)
(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,130)(131,133)
(132,134)(137,146)(138,145)(139,149)(140,150)(141,147)(142,148)(143,151)
(144,152)(153,154)(155,157)(156,158);;
s3 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 14)( 6, 13)( 7, 16)( 8, 15)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 23, 32)( 24, 31)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 46)( 38, 45)( 39, 48)( 40, 47)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 64)( 56, 63)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 78)( 70, 77)( 71, 80)( 72, 79)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 87, 96)( 88, 95)
( 97,106)( 98,105)( 99,108)(100,107)(101,109)(102,110)(103,111)(104,112)
(113,122)(114,121)(115,124)(116,123)(117,125)(118,126)(119,127)(120,128)
(129,138)(130,137)(131,140)(132,139)(133,141)(134,142)(135,143)(136,144)
(145,154)(146,153)(147,156)(148,155)(149,157)(150,158)(151,159)(152,160)
(161,170)(162,169)(163,172)(164,171)(165,173)(166,174)(167,175)(168,176)
(177,186)(178,185)(179,188)(180,187)(181,189)(182,190)(183,191)(184,192);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s3*s2*s1*s0*s1*s2*s3*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 1,104)( 2,103)( 3,102)( 4,101)( 5, 99)( 6,100)( 7, 97)
( 8, 98)( 9,112)( 10,111)( 11,110)( 12,109)( 13,107)( 14,108)( 15,105)
( 16,106)( 17,120)( 18,119)( 19,118)( 20,117)( 21,115)( 22,116)( 23,113)
( 24,114)( 25,128)( 26,127)( 27,126)( 28,125)( 29,123)( 30,124)( 31,121)
( 32,122)( 33,136)( 34,135)( 35,134)( 36,133)( 37,131)( 38,132)( 39,129)
( 40,130)( 41,144)( 42,143)( 43,142)( 44,141)( 45,139)( 46,140)( 47,137)
( 48,138)( 49,152)( 50,151)( 51,150)( 52,149)( 53,147)( 54,148)( 55,145)
( 56,146)( 57,160)( 58,159)( 59,158)( 60,157)( 61,155)( 62,156)( 63,153)
( 64,154)( 65,168)( 66,167)( 67,166)( 68,165)( 69,163)( 70,164)( 71,161)
( 72,162)( 73,176)( 74,175)( 75,174)( 76,173)( 77,171)( 78,172)( 79,169)
( 80,170)( 81,184)( 82,183)( 83,182)( 84,181)( 85,179)( 86,180)( 87,177)
( 88,178)( 89,192)( 90,191)( 91,190)( 92,189)( 93,187)( 94,188)( 95,185)
( 96,186);
s1 := Sym(192)!( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)
( 18, 26)( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)
( 42, 74)( 43, 76)( 44, 75)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)
( 50, 90)( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)
( 58, 82)( 59, 84)( 60, 83)( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)
(101,104)(102,103)(105,106)(109,112)(110,111)(113,122)(114,121)(115,123)
(116,124)(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,163)
(132,164)(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,171)
(140,172)(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,187)
(148,188)(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,179)
(156,180)(157,184)(158,183)(159,182)(160,181);
s2 := Sym(192)!( 1, 65)( 2, 66)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 72)
( 8, 71)( 9, 81)( 10, 82)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)
( 16, 87)( 17, 73)( 18, 74)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)
( 24, 79)( 25, 89)( 26, 90)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)
( 32, 95)( 35, 38)( 36, 37)( 39, 40)( 41, 49)( 42, 50)( 43, 54)( 44, 53)
( 45, 52)( 46, 51)( 47, 56)( 48, 55)( 59, 62)( 60, 61)( 63, 64)( 97,162)
( 98,161)( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)
(106,177)(107,181)(108,182)(109,179)(110,180)(111,183)(112,184)(113,170)
(114,169)(115,173)(116,174)(117,171)(118,172)(119,175)(120,176)(121,186)
(122,185)(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,130)
(131,133)(132,134)(137,146)(138,145)(139,149)(140,150)(141,147)(142,148)
(143,151)(144,152)(153,154)(155,157)(156,158);
s3 := Sym(192)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 14)( 6, 13)( 7, 16)
( 8, 15)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 23, 32)
( 24, 31)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 46)( 38, 45)( 39, 48)
( 40, 47)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 64)
( 56, 63)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 78)( 70, 77)( 71, 80)
( 72, 79)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 87, 96)
( 88, 95)( 97,106)( 98,105)( 99,108)(100,107)(101,109)(102,110)(103,111)
(104,112)(113,122)(114,121)(115,124)(116,123)(117,125)(118,126)(119,127)
(120,128)(129,138)(130,137)(131,140)(132,139)(133,141)(134,142)(135,143)
(136,144)(145,154)(146,153)(147,156)(148,155)(149,157)(150,158)(151,159)
(152,160)(161,170)(162,169)(163,172)(164,171)(165,173)(166,174)(167,175)
(168,176)(177,186)(178,185)(179,188)(180,187)(181,189)(182,190)(183,191)
(184,192);
poly := sub<Sym(192)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s3*s2*s1*s0*s1*s2*s3*s2*s0*s1*s0*s1 >;
References : None.
to this polytope