Polytope of Type {8,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12,2}*768a
if this polytope has a name.
Group : SmallGroup(768,141633)
Rank : 4
Schlafli Type : {8,12,2}
Number of vertices, edges, etc : 16, 96, 24, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,2}*384a, {8,12,2}*384a, {8,12,2}*384b
   3-fold quotients : {8,4,2}*256a
   4-fold quotients : {4,12,2}*192a, {8,6,2}*192
   6-fold quotients : {8,4,2}*128a, {8,4,2}*128b, {4,4,2}*128
   8-fold quotients : {2,12,2}*96, {4,6,2}*96a
   12-fold quotients : {4,4,2}*64, {8,2,2}*64
   16-fold quotients : {2,6,2}*48
   24-fold quotients : {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {2,3,2}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)(  8,104)
(  9,105)( 10,106)( 11,107)( 12,108)( 13,112)( 14,113)( 15,114)( 16,109)
( 17,110)( 18,111)( 19,118)( 20,119)( 21,120)( 22,115)( 23,116)( 24,117)
( 25,127)( 26,128)( 27,129)( 28,130)( 29,131)( 30,132)( 31,121)( 32,122)
( 33,123)( 34,124)( 35,125)( 36,126)( 37,142)( 38,143)( 39,144)( 40,139)
( 41,140)( 42,141)( 43,136)( 44,137)( 45,138)( 46,133)( 47,134)( 48,135)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)
( 57,153)( 58,154)( 59,155)( 60,156)( 61,160)( 62,161)( 63,162)( 64,157)
( 65,158)( 66,159)( 67,166)( 68,167)( 69,168)( 70,163)( 71,164)( 72,165)
( 73,175)( 74,176)( 75,177)( 76,178)( 77,179)( 78,180)( 79,169)( 80,170)
( 81,171)( 82,172)( 83,173)( 84,174)( 85,190)( 86,191)( 87,192)( 88,187)
( 89,188)( 90,189)( 91,184)( 92,185)( 93,186)( 94,181)( 95,182)( 96,183);;
s1 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)( 30, 35)( 37, 43)( 38, 45)
( 39, 44)( 40, 46)( 41, 48)( 42, 47)( 49, 61)( 50, 63)( 51, 62)( 52, 64)
( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)( 58, 70)( 59, 72)( 60, 71)
( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 85)( 80, 87)
( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)( 98,123)( 99,122)(100,124)
(101,126)(102,125)(103,127)(104,129)(105,128)(106,130)(107,132)(108,131)
(109,133)(110,135)(111,134)(112,136)(113,138)(114,137)(115,139)(116,141)
(117,140)(118,142)(119,144)(120,143)(145,184)(146,186)(147,185)(148,181)
(149,183)(150,182)(151,190)(152,192)(153,191)(154,187)(155,189)(156,188)
(157,172)(158,174)(159,173)(160,169)(161,171)(162,170)(163,178)(164,180)
(165,179)(166,175)(167,177)(168,176);;
s2 := (  1, 50)(  2, 49)(  3, 51)(  4, 53)(  5, 52)(  6, 54)(  7, 56)(  8, 55)
(  9, 57)( 10, 59)( 11, 58)( 12, 60)( 13, 62)( 14, 61)( 15, 63)( 16, 65)
( 17, 64)( 18, 66)( 19, 68)( 20, 67)( 21, 69)( 22, 71)( 23, 70)( 24, 72)
( 25, 77)( 26, 76)( 27, 78)( 28, 74)( 29, 73)( 30, 75)( 31, 83)( 32, 82)
( 33, 84)( 34, 80)( 35, 79)( 36, 81)( 37, 89)( 38, 88)( 39, 90)( 40, 86)
( 41, 85)( 42, 87)( 43, 95)( 44, 94)( 45, 96)( 46, 92)( 47, 91)( 48, 93)
( 97,146)( 98,145)( 99,147)(100,149)(101,148)(102,150)(103,152)(104,151)
(105,153)(106,155)(107,154)(108,156)(109,158)(110,157)(111,159)(112,161)
(113,160)(114,162)(115,164)(116,163)(117,165)(118,167)(119,166)(120,168)
(121,173)(122,172)(123,174)(124,170)(125,169)(126,171)(127,179)(128,178)
(129,180)(130,176)(131,175)(132,177)(133,185)(134,184)(135,186)(136,182)
(137,181)(138,183)(139,191)(140,190)(141,192)(142,188)(143,187)(144,189);;
s3 := (193,194);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(194)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)
(  8,104)(  9,105)( 10,106)( 11,107)( 12,108)( 13,112)( 14,113)( 15,114)
( 16,109)( 17,110)( 18,111)( 19,118)( 20,119)( 21,120)( 22,115)( 23,116)
( 24,117)( 25,127)( 26,128)( 27,129)( 28,130)( 29,131)( 30,132)( 31,121)
( 32,122)( 33,123)( 34,124)( 35,125)( 36,126)( 37,142)( 38,143)( 39,144)
( 40,139)( 41,140)( 42,141)( 43,136)( 44,137)( 45,138)( 46,133)( 47,134)
( 48,135)( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)
( 56,152)( 57,153)( 58,154)( 59,155)( 60,156)( 61,160)( 62,161)( 63,162)
( 64,157)( 65,158)( 66,159)( 67,166)( 68,167)( 69,168)( 70,163)( 71,164)
( 72,165)( 73,175)( 74,176)( 75,177)( 76,178)( 77,179)( 78,180)( 79,169)
( 80,170)( 81,171)( 82,172)( 83,173)( 84,174)( 85,190)( 86,191)( 87,192)
( 88,187)( 89,188)( 90,189)( 91,184)( 92,185)( 93,186)( 94,181)( 95,182)
( 96,183);
s1 := Sym(194)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)( 30, 35)( 37, 43)
( 38, 45)( 39, 44)( 40, 46)( 41, 48)( 42, 47)( 49, 61)( 50, 63)( 51, 62)
( 52, 64)( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)( 58, 70)( 59, 72)
( 60, 71)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 85)
( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)( 98,123)( 99,122)
(100,124)(101,126)(102,125)(103,127)(104,129)(105,128)(106,130)(107,132)
(108,131)(109,133)(110,135)(111,134)(112,136)(113,138)(114,137)(115,139)
(116,141)(117,140)(118,142)(119,144)(120,143)(145,184)(146,186)(147,185)
(148,181)(149,183)(150,182)(151,190)(152,192)(153,191)(154,187)(155,189)
(156,188)(157,172)(158,174)(159,173)(160,169)(161,171)(162,170)(163,178)
(164,180)(165,179)(166,175)(167,177)(168,176);
s2 := Sym(194)!(  1, 50)(  2, 49)(  3, 51)(  4, 53)(  5, 52)(  6, 54)(  7, 56)
(  8, 55)(  9, 57)( 10, 59)( 11, 58)( 12, 60)( 13, 62)( 14, 61)( 15, 63)
( 16, 65)( 17, 64)( 18, 66)( 19, 68)( 20, 67)( 21, 69)( 22, 71)( 23, 70)
( 24, 72)( 25, 77)( 26, 76)( 27, 78)( 28, 74)( 29, 73)( 30, 75)( 31, 83)
( 32, 82)( 33, 84)( 34, 80)( 35, 79)( 36, 81)( 37, 89)( 38, 88)( 39, 90)
( 40, 86)( 41, 85)( 42, 87)( 43, 95)( 44, 94)( 45, 96)( 46, 92)( 47, 91)
( 48, 93)( 97,146)( 98,145)( 99,147)(100,149)(101,148)(102,150)(103,152)
(104,151)(105,153)(106,155)(107,154)(108,156)(109,158)(110,157)(111,159)
(112,161)(113,160)(114,162)(115,164)(116,163)(117,165)(118,167)(119,166)
(120,168)(121,173)(122,172)(123,174)(124,170)(125,169)(126,171)(127,179)
(128,178)(129,180)(130,176)(131,175)(132,177)(133,185)(134,184)(135,186)
(136,182)(137,181)(138,183)(139,191)(140,190)(141,192)(142,188)(143,187)
(144,189);
s3 := Sym(194)!(193,194);
poly := sub<Sym(194)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope