Polytope of Type {3,2,8,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,8,8}*768d
if this polytope has a name.
Group : SmallGroup(768,150681)
Rank : 5
Schlafli Type : {3,2,8,8}
Number of vertices, edges, etc : 3, 3, 8, 32, 8
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,8}*384b, {3,2,8,4}*384b
   4-fold quotients : {3,2,4,4}*192
   8-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
   16-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4,20)( 5,21)( 6,22)( 7,23)( 8,27)( 9,26)(10,25)(11,24)(12,29)(13,28)
(14,31)(15,30)(16,34)(17,35)(18,32)(19,33)(36,52)(37,53)(38,54)(39,55)(40,59)
(41,58)(42,57)(43,56)(44,61)(45,60)(46,63)(47,62)(48,66)(49,67)(50,64)
(51,65);;
s3 := ( 8,11)( 9,10)(12,14)(13,15)(16,17)(18,19)(20,24)(21,25)(22,26)(23,27)
(28,34)(29,35)(30,32)(31,33)(36,44)(37,45)(38,46)(39,47)(40,51)(41,50)(42,49)
(43,48)(52,65)(53,64)(54,67)(55,66)(56,61)(57,60)(58,63)(59,62);;
s4 := ( 4,36)( 5,37)( 6,38)( 7,39)( 8,41)( 9,40)(10,43)(11,42)(12,46)(13,47)
(14,44)(15,45)(16,51)(17,50)(18,49)(19,48)(20,52)(21,53)(22,54)(23,55)(24,57)
(25,56)(26,59)(27,58)(28,62)(29,63)(30,60)(31,61)(32,67)(33,66)(34,65)
(35,64);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s4*s2*s3*s4*s2*s3*s4*s3*s4*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(67)!(2,3);
s1 := Sym(67)!(1,2);
s2 := Sym(67)!( 4,20)( 5,21)( 6,22)( 7,23)( 8,27)( 9,26)(10,25)(11,24)(12,29)
(13,28)(14,31)(15,30)(16,34)(17,35)(18,32)(19,33)(36,52)(37,53)(38,54)(39,55)
(40,59)(41,58)(42,57)(43,56)(44,61)(45,60)(46,63)(47,62)(48,66)(49,67)(50,64)
(51,65);
s3 := Sym(67)!( 8,11)( 9,10)(12,14)(13,15)(16,17)(18,19)(20,24)(21,25)(22,26)
(23,27)(28,34)(29,35)(30,32)(31,33)(36,44)(37,45)(38,46)(39,47)(40,51)(41,50)
(42,49)(43,48)(52,65)(53,64)(54,67)(55,66)(56,61)(57,60)(58,63)(59,62);
s4 := Sym(67)!( 4,36)( 5,37)( 6,38)( 7,39)( 8,41)( 9,40)(10,43)(11,42)(12,46)
(13,47)(14,44)(15,45)(16,51)(17,50)(18,49)(19,48)(20,52)(21,53)(22,54)(23,55)
(24,57)(25,56)(26,59)(27,58)(28,62)(29,63)(30,60)(31,61)(32,67)(33,66)(34,65)
(35,64);
poly := sub<Sym(67)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s4*s2*s3*s4*s2*s3*s4*s3*s4*s3*s2*s3*s2*s3 >; 
 

to this polytope